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The paper considers problems of developing stochastic models consistent with results
of character image recognition in video stream. A set of assumptions that define the models
structure and properties is stated. A class of distributions, namely the Dirichlet distribution
and its generalizations, that set a description of the model components is pointed out; and
methods for statistical estimation of the distribution parameters are given. To rank the
models, the Akaike information criterion is used. The proposed theoretical distributions are
verified vs sample data.
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Introduction

Recently there has been a steadily growing interest in document management systems
built on mobile platforms. An integral part of this kind of systems is automatic document
input subsystems in which digital cameras mobile devices and web cameras act as a
"scanning" device. Obvious problems [1-4|, arising in the process of shooting a document
made by a camera-mobile device, and subsequently at the stages of image processing,
including the process of its recognition. Currently, these document images are of a lower
quality than those obtained on the scanning device. Therefore, to obtain accurate and
reliable recognition results, along with the use of traditional methods of document image
recognition, it is necessary to develop new methods based on the processing of a single
video stream as a digital image of the document. With this approach, there are several new
problems, among which the following can be noted. The first is the problem of assessing
the necessary volume of observations to make a decision on reliable recognition of a single
symbol or field of the document. The second is the determination of the final estimates
of the recognition results based on the integration of partial resolution of the document
recognition and its fields on each frame of the video stream. To solve the integration
problem, there are quite numerous nonparametric methods [1,2,5]. The most of them are
based on the use of elementary statistics.

In this paper we consider the problem of construction and investigation of stochastic
models describing the results of document recognition. The use of the proposed models,
in our opinion, will allow us to solve the above problems productively.

We will consider the recognition of structured documents consisting of a set of text
fields with pre-known properties [1,3,6]. For such fields not only tracking of sequence of
recognition results of fields, but analysis of a sequence of recognition results of one symbol
is possible [7].
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1. Problem Statement

Let there be a sequence of frames {I*}5 | for some document. For each I* there is a
field F'(1*%), without loss of generality consisting of character space A¥. We assume that
character space A* is a set of n alternatives, namely {(s;, X*)}"_,, where s, is the character
code of the Cyrillic alphabet Z (s; ="A’, sy =’B’, etc.), X} is the probability alternative
(classifier estimate) obtained at the detection of frame I*. Introduce a notation for vectors

of estimates X* = (XF ...  XF)T Let X*¥ € T, where T" is a simplex
T"Z{(Xla---»Xn)T:Xi207i=1,.-.,n;ZX¢=1}- (1)
i=1

In addition, we assume that the recognition results X*, k = 1,..., K, is a sample of
independent equally distributed values. Let’s call the sequence {X*}X | the recognition
results flow.

The paper deals with the problems of modelling (approximation) of the empirical
distribution of the recognition results flow {X*}£ . It is possible to distinguish four stages
of solving the problem [8]:

1) model choice, i.e. hypothesize affiliation families of distributions;

2) estimate parameters;

3) evaluate quality of fit;

4) estimate goodness of fit statistical tests.

In the classical formulation of the modelling problem based on the existing sample of
independent random variables with unknown distribution density belonging to a certain
family of parametric distributions, it is required to construct estimates of unknown
parameters using the maximum likelihood principle. This problem may not have a solution
if the dimension of the parameter vector is large and far exceeds the sample volume.
Next, a concept is proposed that allows viewing a parametric family as a combination of
distributions with vectors of smaller dimension parameters. This approach allows obtaining
parameter estimates for small sample volumes of recognition results.

2. Preliminary Observations and Properties

Here are the main symbols, as well as some definitions and results from [9]. Consider
two positive random vectors X = (Xi,...,X,) and Y = (Y,...,Y,) associated with
X; = &, where Yt = Y7 | Vi In literature the vector X is called compositional data,
and the vector Y is called basis. Note that the estimates X' can be considered as an
example of compositional data.

Quite often the components can be grouped according to some homogeneity criterion.
In such cases, it is of interest to study the totals and relative values within each group. In
order to formalize this approach, it is accepted to use amalgamation and subcomposition,
which can be explained as follows. Let ag = 0 < a; < ... < ac_1 < ac = n be the set of
indexes and

X1, Xa| Xasts o Xao| oo | Xa 41, - Xa, (2)

be a complete partition (of order ¢ — 1) of subsets of the vector X. Based on partition (2),
we define the subcomposition with index :

Si = (Xai,ﬁ-lv"-;Xai)/X‘—i_? (3)

)
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where X;r =X, 11 +...+X,,72=1...,c. The amalgamation is the vector of the
totals of the ¢ subsets X+ = (X{,..., X).

It is known [10] that for modelling of composite data the presence of the composite
invariance property is essential. The basis of Y is compositionally invariant if the
corresponding composition X = C(Y) is independent of Y. In fact, all versions of
the notions of independence presented in the literature can be expressed in terms of
subcompositions S;, i = 1,..., ¢, and amalgamation X . For example, consider the most
popular partition case of order 1 (¢ = 2). We denote independence by L and a set of
independent random variables by A 1L B 1 C. Let a; = m. Then, partition independence
means that S; 1L S, L XT; subcompositional invariance means that (S;,S;) L XT;
neutrality on the left means that S; L (Sy, XT); neutrality on the right means that
Sy L (Sy, XT); subcompositional independence means that S; L Ss.

3. Dirichlet Distribution and Its Generalizations

Dirichlet distribution is one of the key multidimensional distributions for composite
data modelling. It plays an important role for the representation of proportions. This
distribution has a simple form and has many convenient mathematical properties [11].
However, the Dirichlet distribution is considered to be insufficiently flexible. Therefore,
generalizations of Dirichlet distribution were proposed by different authors [9,10].

A random vector X = (Xi,...,X,)T € T" has a Dirichlet distribution if the
distribution density is as follows

“q) = F(Oé+) - ‘(Eqifl
Fooi ) = e oy L1 .

where « is the vector of positive parameters, oy = > | ;.

There is a simple relation [11| between the parameters of the joint density and the
marginal densities of each component X; ~ Beta(ay;, oy — ;).

Let’s make the following transformation

X;
X=Xy, X/ = — ,1=2,...,n—1 (5)
(1->Xj)
j=1
Then for these random variables is fair
X; ~ Beta(ay, Zaj) and X7| X1,...,X;_1 ~ Beta(«;, Z aj), it=2,...,n—1. (6)
j=2 j=i+1

The flexible Dirichlet distribution F'D"(a,p,7) was first proposed in [9]. Let X =
(X1,...,X,)T € T" The distribution function of the vector X ~ FD"(a, p,T) is a finite
mixture of Dirichlet distributions

n

n n .
FD <X7 «, p77—) = E plD <X7 o+ Tei)a (7)
i=1
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where e; is a vector whose elements are all equal to zero except for the i-th element which
is equal to one, and the density of the distribution is as follows

F(O{+—|—T) az—l T
fFD(X a,p, T ) Hz 1P(061> (L[ ) (sz al i)? (8)

where x e T i=1,....m 0, >0,y => " a;; 0<p; <1, > 7" pi=1;7>0.
The marginal distributions of vector X components can be represented as follows

X; ~ piBeta(a; + 1,04 — ;) + (1 — p;)Beta(a, o —a; +7), i =1,...,n.  (9)

A vector X = (X1,...,X,,)T € T" is said to follow a Connor — Mosimann distribution
CM (a, B) if the density can be represented as follows [12]:

az+za_ (v =
seution ) = [ Fgrer (S aorerlant, o

wherex € T" o; >0,i=1,...,n,8;, >0,5=1,...,n—1, 5y = 0. Apply a transformation
similar to (5)
Xi=X1, X/=——7F—,1=2,...,n—1L (11)

(1->2X;)
j=1
Accordingly, conditional distributions are defined as follows
X; ~ Beta(ay, 1) and X[| Xy, ..., X;_1 ~ Beta(ay, 5;), i =2,...,n— 1. (12)

The Dirichlet distribution is closely related to the parametric family of multivariate
Liouville distributions. For consideration take from this family the beta-Liouville
distribution. Let the vector X € (0,1)" have a stochastic representation X = RY, where
RL1Y, R =" X, R~ Beta(a,b), Y = (Y1,...,Y,)" € T", Y ~ Dir(a). A random
vector X is said to follow a beta-Liouville distribution. The density of beta-Liouville
distribution has the form [13]:

fer(x1, ... xpya, by, ... ) =
n

F(& + b)r <Z Oél> li a;—1 n b—-1 B
_ (Z ) (1 _ Z) [T 09
(o 0) 1 e a0

4. Mathematical Model

Consider the vector X &€ T". Without loss of generality, assume that
X1 > ... > X,. Let’s set some criteria, using which we can divide the composition X into
two subcompositions XM = (X1,...,X,,)" and X® = (X,..1,...,X,)7". For example,
the first subcomposition includes are all elements whose values exceed a certain level L,
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and all the rest elements are in the second. Both subcompositions may be represented as

follows )
(1 )X (2)
X )’

2)
_xoX
=X e

+

X0 = x{ (14)

v
+
where X =>" X X( ) = =D i1 Xi X(f) =1- X(j). Next, introduce new variables

x (1) X (2)
Z0 ==, 2= = R=x{ (15)
X4 1— X}

It is possible to write an expression

1 1
X:(X()):< R-ZW )’ (16)
X () (1-R)-Z®
where XV is an m-dimensional vector; X is an (n — m)-dimensional vector.
Formulate assumptions for the variables included in the right part of (16).
Assumption 1. Let ZW1Z® LR,
Assumption 2. Let R ~ Beta(a,b).
Assumption 3. Let Z® ~ Dir(a®).
Assumption 4. Let ZY ~ Dir(aM).
Assumption 5. Let Z") ~ FD(aW, p, 7).
Assumption 6. Let Z ~ CM (oM, pM).
For simplification of designations consider

o= (ZE:) = (a1, ..., a). (17)

where oM is an m-dimensional vector of parameters; o? is an (n—m)-dimensional vector
of parameters.

Using the assumptions, we construct three stochastic models for the distribution of
composition X.

Model 1. If assumptions 1 — 4 are satisfied, the density of the composition X has the

form
filzy, ... xp;a,b, a1, ... =

Ty (ia> ( > )

C T@re [T 18)

m a—‘in: a;—1 n b—. Z a;—1 n
X (sz) - (Z 9€z> o H s

=1

P a) 0> )
Lla+b) , _ i=1 Do — i=ma1 2100 —
RO w1 =7 (19)
H F(az) i=1 H F(az) i=m+1
=1 t=m-+1
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. (1) . o
Now consider z1,...,z,,z} . The corresponding Jacobian is given by

[ R zgll, S T xi)) = (xg)) (1 — x(j))*("*m). (20)

Thus, from (15), (19) and (20) we have (18).
Model 2. Tf assumptions 1 — 3, 5 are satisfied, the density of the composition X has
the form

fo(x1, ..., xy; 0,0, al,.. SOy D1y e e ey Py T) =

Dla + BT (zwf)r (= )<Z> o

['(a)I'(

:j:

(21)

=1

- bii:§+1ai71 - a;—1 o F(al) T
X Z z; H% Zpim% .

i=m+1 i=1 =1

Model 3. If assumptions 1 — 3, 6 are satisfied, the density of the composition X has
the form

f3(x17"'7$n;a7b7a17‘"uan7ﬁl7"'76m—1) =

[(a+b)T (;Zéﬂ a? (Zil IZ) a1 ( i Ii>bi§+1%1 )

I'(@)'(b) I T'(ey i=m1

i=m-+1

m—1 m Bi—1— (i +pi) n
Ul + Bi) a1 Br-1—1 —1
X — X x,mt z}
I Sy (2 11

i=1 i=m+1

(22)

5. Estimation of Model Parameters

For estimating the Dirichlet parameter vector, the principle of maximum likelihood is
usually used. We assume that the parameter values that provide the maximum of the log-
likelihood function are taken as estimates:

L(Xn7 ) Zlong(Xn, )_

:k{loglﬂ(zn:ozZ Zlogf () +Z i — 1) 1ogG}
i=1

(23)

where G; = (H xﬂ)% i=1,...,n.

It is known [14] that the function L is globally concave, since the Dirichlet distribution
belongs to the exponential family, and the Newton — Raphson algorithm converges to the
global optimum [11,15].

Estimation of the parameters of a flexible Dirichlet distribution is considered as the
problem of separating a finite mixture of Dirichlet distributions, for the solution of which
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the EM algorithm [16, 17| can be suitably adapted. Suppose we have k independent
observations x;, j = 1,...,k, each having a distribution (8). Further complete vector
data x. is given by:

X, = (X,V) = (X1, V1, ..., Xk, Vi), (24)
where vector v; = (v;1,...,v;,) represents the missing data with v;; being equal to 1 if the

J-th observation has arisen from the i-th component of the mixture model and 0 otherwise.
The log-likelihood function with respect to (7) and (24) has the form

k n
log Le(0) = > > wjillogp; + log fn(x;; a + 7e;)], (25)

j=1 i=1

where 6 = (o, p, 7); fp(x;; 0 + 7e;) is the Dirichlet density.

The s + 1 step of the EM algorithm can be described as follows.

E-step: given the current parameter estimates 6® = (a® p® 7)) and x =
(x1,...,Xg), calculate the conditional expectation of the complete-data log-likelihood

k n
QUO:09) =" pi(x;:0¢))log pi + log fo (s + 7ey)], (26)

j=1 i=1

where p;(x;; 6'*)) represents "posterior" probability that x; belongs to the i-th component
of the mixture given 6® which is defined as follows
pifp(xj; 0+ 7e€;)

i(%5:0) = == ,i=1,...,n. 2
pi(x;; 0) S e fo(iatre) | n (27)

M-step: maximize (26) to obtain the maximum likelihood estimates of §(*1)
o+ = arg max Q(6;09). (28)
In particular, we have p\*™" = %Zlepi(xj; 0), i =1,...,n — 1, whereas a1 7(+1)

can be computed by implementing a Newton — Raphson method. Iterating occurs until
the "sufficiently small" change of the observed log-likelihood (or the parameter estimates)
is reached.

Estimates of the parameters of the Connor — Mosimann distribution can be obtained
using properties (12) [12]. Perform the estimation of the parameters of the beta
distribution, «,., B, (r = 1,...,n — 1), and take the resulting estimates for estimates
of the prior distribution.

6. Applying Criteria to Rank a Model

In this section, we consider the problem of selection a model from a set of competing
models, which gives the best in the sense of not approaching the characteristic of the
studied flow of recognition results. In modern statistics analysis for the purposes of ranking
models uses a simple and effective tool — the Akaike information criterion (AIC), which
can be represented as follows

QAIC(F(k)7 é(k:)) _ _2Zm ® (v, é(k)) +2¢, (29)
j=1
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where F®*) is the k-th model; f®)(.) is the distribution density for F®; y; is the
observation, j = 1,...,n; 6®) is the vector-parameter for F®: ¢®) ig the number of
parameters on which F*) depends.

The choice of the model consists in ranking the models in accordance with the values
of the Q@ a7¢ and the preference of the model with its lowest value.

Remark 1. Based on the AIC, we can construct a partition rule for the composition
X. Suppose that for some set of dimensions of subcompositions M = {muyin, - - - , Mmax }»
assumptions 1 — 3 hold. Then the required dimension for, for example, model 1 can be
defined as the solution of the problem

K
Y= in (=2 Infi(XF ... X5a,b,Gq,...,60m,1,...,1) 4 2m).
m argggﬁl( ; nfi(Xy, ..., X0 a,0,6q,. .., 4m,1,...,1)+ 2m) (30)

It is easy to see that the obtained results (18), (21), and (22) differ in the type of
distribution that describes the value of X(l) Therefore, we confine ourselves to calculating

the values of the partial criterion Q rc (Table 1).

Table 1
Models Qaic
Model 1 (Dirichlet distribution) —221,73
Model 2 ( flexible Dirichlet distribution) —228,50
Model 3 (Connor — Mosimann distribution) | —234,39

7. Test of Models Fit

In this section, we consider the question of how well the proposed models are consistent
with the observations. Before proceeding to the construction of objective quantitative
estimates, it is useful to subject the obtained models to the procedure of informal graphic
diagnostics, that is, to compare the sample data with the parametric model by graphic
methods. To visualize the quality-of-fit of models, we use the so-called "Q-Q (quantile-
quantile) plot", which is a method for comparing the empirical and the theoretical
distributions by plotting their quantiles against each other. If the theoretical distribution
is well matched, the points on the plot are located along a straight line. Figs. 1 to 4 show
the graphs for the proposed models.

Before proceeding to the formulation and testing of the hypotheses of interest, we give
the formula of "standardization" X ~ Beta(a,b)

X

B(X;a,b)
X*=1I1(X;a,b) = é(a“b = /t“ll—tbldt (31)

0

where I(z,a,b) is the regularized incomplete beta function; B(z,a,b) is the incomplete
beta function; B(a,b) is the beta function. It is known [18] that the transformed random
variable has the following property

X* ~ Beta(1,1). (32)
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Fig. 1. The Q-Q plot for the variable XJ(FI) in the verification of assumption 2
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Fig. 2. The Q-Q plot for the variable X() in model 1

We need a similar to (31) transformation formula for Y corresponding to a mixture of beta
distributions

Y ~ p- Beta(ay,as) + (1 — p) - Beta(by, bs). (33)
Introduce a transformation
Y*IpI<Y,CL1,(12)+(1—p)[(Y,bl,bg), (34)

then Y* ~ Beta(1,1).

Formally, all hypotheses of goodness-of-fit necessary for our purposes have a general
form. Let X1, ..., X, be asequence of independent identically distributed random variables
with distribution F'. Then the null hypothesis is

Hy: F(x)=1(z;1,1). (35)
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Fig. 3. The Q-Q plot for the variable X in model 2
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Fig. 4. The Q-Q plot for the variable X() in model 3

To verify the correspondence between the sample distribution and the theoretical law, we
use the Anderson—Darling tests of goodness-of-fit [19], based on statistic [20]

So = —n — zi {QZ; i (e, 0) + <1 - 22_ 1) In(1— F(:W,e))}. (36)

n

We point out that large values of Sq statistics indicate poor compliance. The distribution
of the statistics Sq rapidly approaches the asymptotic distribution, which has the form [21]

V2r LU+ f A+
1) p{ }

AS) = =g~ 2 (-1 55

x 7eXp {8( S Wty }dy. (37)

y?>+1) 85

For practical purposes, this distribution may be used provided that the sample size is
greater than 5 [19)].
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In conclusion, consider the hypothesis testing scheme. We take assumption 4. Since
ZW ~ Dir(aW), using properties (5) and (6) of the Dirichlet distribution, one can obtain

* 1 * Zl.(l)
Zi = Zl( )7 Z; = il
(1->2;7)
Jj=1
Z5 ~ Beta(ag ), Z Ozgl)), (38)

Apply the transformation (31) toZ; and obtain

V=140, 3 of),
j=2
Y;:I(Zi*;am, > aj(-l)), i=1,....,m—1.

1
j=it1

(39)

Then, given (32), we can formulate the hypothesis of goodness-of-fit in the following form
Hy: Fi(y) = 1(y;1,1), (40)

where Fj(y) is the distribution function of Y;, i =1,...,m—1; I(y,1,1) is the regularized
incomplete beta function with parameters (1,1).

Table 2
The results of the goodness-of-fit test

Alternative | Model | Sq p-value

<K> 1 1,4679 | 0,1844
2 0,67315 | 0,5807
3 0,51872 | 0,7273

<E> 1 1,0981 | 0,3095
2 0,51691 | 0,7286
3 0,13964 | 0,9992

As it can be seen, when setting the significance level a < 0,18, there is no cause for
rejecting the hypotheses tested by the goodness-of-fit test for all models.

Conclusion

In this paper we propose new probabilistic models describing the results of document
recognition in video stream. The concept of the flow of recognition results is introduced.
The considered models suggest that the result of sign recognition in the field of the
document can be represented as a combination of random variables and random vectors.
For various assumptions, expressions for the density of the results of sign recognition
are obtained. Methods for parameters estimation are presented. The Akaike information
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criterion is used for ranking models. Tests that confirmed the adequacy of the stochastic
models were carried out. In conclusion, note that the solution of the problem of integration
the parameters obtained by simulation of the flow of the recognition results can be used
for [7].
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MOAEJJIMPOBAHUE ITOTOKA PE3VJIBTATOB PACIIOSHABAHU A
CIMBOJIOB B BUJEOIIOCJIEZJOBATEJIbHOCTAX

B.B. Apaasapos'?, 0.A. Caasun'?, A.B. Ycxos', H.M. SAnuwescrutil
L®egepanpablii nectenoBaTeIbeKHi MeHTp <MndopmaTrnka n ynpasaennes PAH,
r. Mocksa, Poccuiickas @enepanus

2000 «Cwmapt Dnmxunc Ceppucs, 1. Mocksa, Poccniickaa Pegepanns

B mannoit paboTe paccMaTpuBaiOTCa MPOOIEMBI TOCTPOEHNS BEPOSITHOCTHBIX MOEeil,
COTUIACOBAHHBIX € PE3yJILTATAMY PACMO3HABAHUS 00PA30B CHMBOJIOB B BUIEOTTOCIEI0BATE b
Hoctsix. ChopMynmupoBaHa COBOKYITHOCTH HPEIIONIOKEHUH, ONPEIeIIONuX CTPYKTYPY U
CBOICTBa MOCTPOEHHBLIX Mojesel. Bolgesen Kacc pacnpejesieHuil, a UMEeHHO paciipejesie-
nne Hupwuxie n ero obobIeHns, 3aIa0INX OIMNCAHNE KOMIIOHEHTOB MOIEJeH, U MPUBEIe-
HBI METO/bl CTATHUCTUYECKOrO OIEHWBAHWS MAapaMETPOB YKa3aHHBIX pacrperenenuit. s
PAHKMPOBAHUS MOJETEH UCIONb3yeTcss NHPOPMAIMOHHLIH KpuTepuit Akanke. [IpoBemena
MPOBEPKA, COTJIACUST TTPEJIOZKEHHBIX TEOPETUIECKUX PACTPEIEIEHUI BRIOOPOIHBIM JAHHDBIM.

Karoueevie cao8a: 8epoamnocmuas modeas; 6udeonocaedo8amesvbHocms; pacno3nasa-
HUe cume0a08; pacnpedeserue Jlupuzae; xpumepuli Axaure; kpumeputl coeaacus Andepco-
na — apaunea.
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