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By a stochastic Leontief type equation we mean a special class of stochastic di�erential

equations in the Ito form, in which there is a degenerate constant linear operator in the

left-hand side and a non-degenerate constant linear operator in the right-hand side. In

addition, in the right-hand side there is a deterministic term that depends only on time, as

well as impulse e�ects. It is assumed that the di�usion coe�cient of this system is given by

a square matrix, which depends only on time. To study the equations under consideration,

it is required to consider derivatives of su�ciently high orders from the free terms, including

the Wiener process. In connection with this, to di�erentiate the Wiener process, we apply

the machinery of Nelson mean derivatives of random processes, which makes it possible

to avoid using the theory of generalized functions to the study of equations. As a result,

analytical formulas are obtained for solving the equation in terms of mean derivatives of

random processes.

Keywords: mean derivative; current velocity; Wiener process; stochastic Leontief type

equation.

Introduction

We study the system of stochastic di�erential equations in Rn of the form

L̃ξ(t) = M̃

t∫
0

ξ(s)ds+

t∫
0

f(s)ds+Qζ(t) +

t∫
0

P (s)dw(s), 0 ≤ t ≤ T,

where L̃ and M̃ are degenerate and nondegenerate n×n matrices, respectively, forming a
regular pencil, Q is an n× n matrix, ζ(t) is an n-dimensional process of jumps, P (t) is a
su�ciently smooth n×n matrix, f(t) is a su�ciently smooth time-dependent deterministic
vector function, w(t) is a Wiener process, ξ(t) is the random process we are looking for.

With the use of systems of the Leontief type in the works by A.L. Shestakov,
G.A. Sviridyuk and A.V. Keller [1�3] dynamic distortion of signals in radio devices is
investigated. In the works by O. Schein, G. Denk [4], T. Sickenberger, R. Winkler [5,6] the
systems under consideration arise in the mathematical modelling of oscillations and electric
circuits. These equations arise in the works of L.A. Vlasenko et al [7,8] in the mathematical
modelling of the dynamics of corporation enterprises when using investment. We also
mention the work by A.A. Belova, A.P. Kurdyukova [9], in which numerous applications
of the systems under consideration are described.

To study this class of equations, it is required to consider higher-order derivatives of
free terms, in this case the deterministic term and the Wiener process or white noise. It
is known that the derivatives of the Wiener process exist only in the sense of generalized
functions, which are extremely di�cult to use in these equations. This circumstance makes
a direct investigation of our system complicated. In this connection, we note the work by
L.A. Vlasenko and others [8], in which restrictions on the coe�cients of the equation are
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introduced, which make it possible not to use the "derivatives" of the Wiener process.
Here we carry out the study of the equation without resorting to these limitations.

Following [10, 11], in which this class of equations with a variable di�usion coe�cient
and without impulsive in�uences on the right-hand side was studied, we use the machinery
of the Nelson mean derivatives of random processes to study the solutions of the equations
under consideration, for the description of which generalized functions are not applied.
Namely, we apply the symmetric mean derivatives (the current velocities) of the Wiener
process. Current velocities, according to the general ideology of mean derivatives, are
natural analogues of the physical velocities of deterministic processes. As a result, for
the system under consideration, we obtain physically meaningful formulas for solutions in
terms of symmetric mean derivatives of random processes.

1. Mean Derivatives

We consider the stochastic process ξ(t) in Rn, t ∈ [0, T ], de�ned on a certain probability
space (Ω,F ,P) and such that ξ(t) is an L1-random element for every t. It is known that
every such a process generates a family of σ-subalgebras of σ-algebra F called "present"
and denoted by N ξ

t . It is the minimal σ-algebra that includes all preimages of Borel sets
from Rn. We suppose N ξ

t to be complete, that is, it is completed by all sets of probability
zero.

For convenience, we denote the conditional expectation E(·|N ξ
t ) relative to the

"present" N ξ
t for ξ(t) by Eξ

t . The usual ("unconditional") mathematical expectation is
denoted by symbol E.

Generally speaking, almost all sample trajectories of the process ξ(t) are not
di�erentiable, so that its derivatives exist only in the sense of generalized functions.
To avoid using generalized functions according to Nelson [12�14], we give the following
de�nition:

De�nition 1. [15]
(i) The mean forward derivative Dξ(t) of the process ξ(t) at the time moment t is an
L1-random element of the form

Dξ(t) = lim
△t→+0

Eξ
t (
ξ(t+△t)− ξ(t)

△t
),

where the limit is assumed to exist in L1(Ω,F ,P) and △t → +0 means that △t tends to
0 and △t > 0.
(ii) The mean backward derivative D∗ξ(t) of the process ξ(t) at time t is L1-random variable

D∗ξ(t) = lim
△t→+0

Eξ
t (
ξ(t)− ξ(t−△t)

△t
),

where (as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and △t → +0 means that △t
tends to 0 and △t > 0.

It should be noted that, in general, Dξ(t) ̸= D∗ξ(t), but if, for example, ξ(t) almost
surely has smooth sample trajectories, these derivatives obviously coincide.
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From the properties of conditional expectation (see [18]) it follows that Dξ(t) and
D∗ξ(t) can be represented as superpositions of ξ(t) and Borel vector �elds (regressions)

Y 0(t, x) = lim
△t→+0

Eξ
t (
ξ(t+△t)− ξ(t)

△t
|ξ(t) = x)

Y 0
∗ (t, x) = lim

△t→+0
Eξ

t (
ξ(t)− ξ(t−△t)

△t
|ξ(t) = x)

on Rn, that is, Dξ(t) = Y 0(t, ξ(t)) and D∗ξ(t) = Y 0
∗ (t, ξ(t)).

De�nition 2. [15] The derivative DS = 1
2
(D +D∗) is called the symmetric derivative in

the mean. The derivative DA = 1
2
(D − D∗) is called the antisymmetric derivative in the

mean.

We consider the vector �elds vξ(t, x) = 1
2
(Y 0(t, x)+Y 0

∗ (t, x)) and uξ(t, x) = 1
2
(Y 0(t, x)−

Y 0
∗ (t, x)).

De�nition 3. [15]vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity of the process
ξ(t); uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic velocity of the process ξ(t).

The current velocity is a direct analogue of the ordinary physical velocity of
deterministic processes for random processes (see [15]). The osmotic velocity measures
how fast the "randomness" of the process grows.

We denote by the symbol w(t) the Wiener process [15]. It plays a decisive role in our
constructions. The following technical statements take place.

Lemma 1. [16] Let w(t) be an n-dimensional Wiener process, P (t) be a su�ciently smooth
k × n matrix, t ∈ (0, T ). Then for any t we have the formula

Dw
S

t∫
0

P (s)dw(s) = P (t)
w(t)

2t
.

Lemma 2. [15,17] For t ∈ (0, T ), the following equalities hold

Dw(t) = 0, D∗w(t) =
w(t)

t
, DSw(t) =

w(t)

2t
.

For the integer k ≥ 2

Dk
Sw(t) = (−1)k−1

k−1∏
i=1

(2i− 1)

2k
w(t)

tk
.

2. Main Result

As it is already mentioned in the introduction, we consider the stochastic di�erential
equation in Rn of the form

L̃ξ(t) = M̃

t∫
0

ξ(s)ds+

t∫
0

f(s)ds+Qζ(t) +

t∫
0

P (s)dw(s), 0 ≤ t ≤ T, (1)
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where L̃ and M̃ are degenerate and nondegenerate n× n matrices, respectively, λL̃+ M̃ ,
λ ∈ R is a regular pencil of matrices, Q is an n × n matrix, ζ(t) is an n-dimensional
process of jumps, P (t) is a su�ciently smooth n× n matrix, f(t) is a su�ciently smooth
time-dependent deterministic vector function, w(t) is a Wiener process, ξ(t) is the random
process that we are looking for. The process of jumps ζ(t) = ζ(t, ω) is de�ned as follows

ζ(t, ω) =
N∑
r=1

ζ̃r(ω)χ(t− tr), 0 < t1 < · · · < tN < T,

where χ is the Heaviside function, which is zero for negative values of the argument and
1 for nonnegative, ζ̃r(ω) are random variables with values in Rn.

From the form of (1) it is clear that (for simplicity) the initial condition for the solution
of (1) is assumed to be of the form

ξ(0, ω) = 0. (2)

From the very beginning we say that this condition is not satis�ed for the solutions
constructed below. Therefore, we approximate solutions by processes that satisfy this
initial condition, but become solutions only from a certain (arbitrarily small) time instant
t0 > 0 (see below).

We seek the formulas for the solutions of the problem (1), (2) among random processes
ξ(t, ω), which satisfy (in the sense, as described below) the di�erential equations

L̃ξ(t)− L̃ξ(0) = M̃

t∫
0

ξ(s)ds+

t∫
0

f(s)ds+

t∫
0

P (s)dw(s), 0 ≤ t ≤ t1,

L̃ξ(t)− L̃ξ(tr) = M̃

t∫
tr

ξ(s)ds+

t∫
tr

f(s)ds+

t∫
tr

P (s)dw(s), tr ≤ t ≤ tr+1,

L̃ξ(t)− L̃ξ(tN) = M̃

t∫
tN

ξ(s)ds+

t∫
tN

f(s)ds+

t∫
tN

P (s)dw(s), tN ≤ t ≤ T,

for all r = 1, 2, . . . , N − 1, at the points tr they satisfy the equalities

L̃ξ(tr + 0, ω)− L̃ξ(tr − 0, ω) = Qζ̃r(ω), r = 1, 2, . . . , N,

and at the initial instant of time t = 0 satisfy the initial condition (2).
Thus, the process ξ(t) for the solution of the problem (1), (2) is determined sequentially

for r = 0, 1, . . . , N through random processes ξr(t), which satisfy the equations

L̃ξ0(t)− L̃ξ0(0) = M̃

t∫
0

ξ0(s)ds+

t∫
0

f(s)ds+

t∫
0

P (s)dw(s), 0 ≤ t ≤ t1, (r = 0),

L̃ξr(t)− L̃ξr(tr) = M̃

t∫
tr

ξr(s)ds+

t∫
tr

f(s)ds+

t∫
tr

P (s)dw(s), tr ≤ t ≤ tr+1,

L̃ξN(t)− L̃ξN(tN) = M̃

t∫
tN

ξN(s)ds+

t∫
tN

f(s)ds+

t∫
tN

P (s)dw(s), tN ≤ t ≤ T,
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è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2018. Ò. 11, � 2. Ñ. 58�72

61



E.Yu. Mashkov

r = 1, 2, . . . , N − 1, where

ξ0(0) = 0, L̃ξr(tr) = L̃ξr−1(tr, ω) +Qζ̃r(ω), r = 1, . . . , N.

It is not hard to see, that equation (1) in a general form is inconvenient for studying,
therefore we bring it to some canonical form. For a regular matrix pencil there exists
a Kronecker-Weierstrass transformation (described by a pair of nondegenerate matrices
(operators) A = (aij) and AR) under which the matrices L̃ and M̃ are reduced to
quasidiagonal form (see [19]), and, with the corresponding numbering of the basis vectors,
in L = AL̃AR �rst along the main diagonal there are Jordan cells with zeros along the
diagonal, and the last matrix along the main diagonal is the unit matrix. In M = AM̃AR,
in the rows corresponding to the Jordan blocks there is a unit matrix, and the last block
along the main diagonal is a certain non-degenerate matrix. We give the matrices L and
M in a general explicit form:

L =



0 1 0 0 0 0 . . . 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 1 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0 0 0 . . . 1



,

M =



1 0 0 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 0 0 . . . 0
0 0 0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 0 0 1 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 an−q

n−q an−q
n−q+1 . . . an−q

n

0 0 0 0 0 0 0 0 an−q+1
n−q an−q+1

n−q+1 . . . an−q+1
n

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 ann−q ann−q+1 . . . ann



.
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Thus, after applying the Kronecker � Weierstrass transformation, equation (1) takes
the following form

Lη(t) =

t∫
0

Mη(s)ds+

t∫
0

Af(s)ds+ AQζ(t) +

t∫
0

B(s)dw(s), (3)

η(0) = 0, (4)

where B(t) = AP (t), η(t) = A−1
R ξ(t). Then, taking into account what has been said

above, the formulas for the solutions η(t) of problem (3), (4) are determined successively
for r = 0, 1, . . . , N through random processes ηr(t), which satisfy the equations

Lη0(t)− Lη0(0) =

t∫
0

Mη0(s)ds+

t∫
0

Af(s)ds+

t∫
0

B(s)dw(s), 0 ≤ t ≤ t1, (5)

Lηr(t)− Lηr(tr) =

t∫
tr

Mηr(s)ds+

t∫
tr

Af(s)ds+

t∫
tr

B(s)dw(s), tr ≤ t ≤ tr+1, (6)

LηN(t)− LηN(tN) =

t∫
tN

MηN(s)ds+

t∫
tN

Af(s)ds+

t∫
tN

B(s)dw(s), tN ≤ t ≤ T, (7)

r = 1, . . . , N − 1, where

η0(0) = 0, Lηr(tr) = Lηr−1(tr, ω) +Gζ̃r(ω), r = 1, . . . , N (8)

and G = AQ.

Remark 1. As it is noted above, derivatives of free terms (including the Wiener process)
are needed to construct the process describing the model given by equations (5), (6) and
(7). The derivatives of the Wiener process exist only in the sense of generalized functions.
Therefore, in order to avoid the use of generalized functions, we use the symmetric mean
derivatives (current velocities) Dw

S of the Wiener process to describe the model given by
(5), (6) and (7) processes. In this paper, the σ-algebra "present" of the Wiener process
will be used to calculate higher-order symmetric mean derivatives. Note that to calculate
the mean derivatives, one can also use some other σ-algebra, but then the formulas for
computing higher-order symmetric derivatives of the Wiener process will be changed.

Taking into account the structure of matrices L and M , it is not di�cult to see that
problems (3), (4) and (5) � (8) break up into several independent systems of equations.
The "bottom" of them corresponds to the unit segment in the diagonal in L and the block
consisting of a matrix in the lower right corner of M . Denote the last matrix by K, and
denote by ϑ(t) the vector of dimension q+1, composed of the last q+1 coordinates of the
vector η(t). Then ϑr(t) is described by the equation

ϑr(t)− ϑr(tr) = K

t∫
tr

ϑr(s)ds+

t∫
tr

Af(s)ds+

t∫
tr

B(q+1)(s)dw(s), (9)

tr ≤ t ≤ tr+1, r = 1, 2, ..., N − 1
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in Rq+1. Here B(q+1)(t) is the matrix composed of the last q + 1 rows of the matrix B(t),
w(t) is (q + 1)-dimensional Wiener process composed of the last q + 1 coordinates of the
Wiener process in Rn, Af(t) is (q + 1)-dimensional vector composed of the last q + 1
coordinates of the vector Af(t). For equation (9), the analytic formula for solutions is
known (see [20]):

ϑr(t) = eK(t−tr)ϑr(tr) +

t∫
tr

eK(t−τ)Af(τ)dτ +

t∫
tr

eK(t−τ)B(q+1)(τ)dw(τ).

Note that for equations of the form (9) de�ned on the intervals [0, t1] and [tN , T ], analogous
formulas hold for solutions. Summing all ϑr(t), we obtain the expression for ϑ(t)

ϑ(t) =
N∑
r=1

eK(t−tr)Gζ̃r(ω)χ(t− tr)+

+

t∫
0

eK(t−τ)Af(τ)dτ +

t∫
0

eK(t−τ)B(q+1)(τ)dw(τ),

where Gζ̃r(ω) is (q + 1)-dimensional vector composed from the last q + 1 coordinates of
the vector Gζ̃r(ω).

The other systems correspond to Jordan cells in L and unit matrices of the
corresponding dimension chosen from the rows and columns of M . We consider this case
by the example of the (p+1)× (p+1) matrix (the Jordan cell) N in the upper left corner
of L

N =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
0 0 0 . . . 0


and the corresponding identity matrix inM . We denote by (Af)p+1 the (p+1)-dimensional
vector composed of the �rst p + 1 coordinates of the vector Af(t), by η(p+1)(t) � the
(p + 1)-dimensional vector composed from the �rst p + 1 coordinates of the vector η(t),
and w(p+1)(t) is the vector consisting of the �rst p+ 1 coordinates of the vector w(t). It is
easy to see that the coordinates of the vector Af have the form (Af)i =

∑n
j=1 a

i
jf

j. We
denote by B(p+1)(t) the matrix

B(p+1)(t) =


b11(t) b12(t) . . . b1n−1(t) b1n(t)
b21(t) b22(t) . . . b2n−1(t) b2n(t)
...

... · · · ...
...

bp1(t) bp2(t) . . . bpn−1(t) bpn(t)

bp+1
1 (t) bp+1

2 (t) . . . bp+1
n−1(t) bp+1

n (t)


composed of the �rst p+ 1 rows of the matrix B(t).
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Then (ηr)(p+1)(t) is a solution of equation

N(ηr)(p+1)(t)−N(ηr)(p+1)(tr) =

t∫
tr

((ηr)(p+1)(s) + (Af)(p+1)(s))ds+

+

t∫
tr

B(p+1)(s)dw(s), (10)

tr ≤ t ≤ tr+1, r = 1, 2, ..., N − 1.

In the coordinate form, this equation looks as follows:
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
0 0 0 . . . 0




η1r(t)
η2r(t)
...

ηpr (t)
ηp+1
r (t)

−


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
0 0 0 . . . 0




η1r(tr)
η2r(tr)
...

ηpr (tr)
ηp+1
r (tr)

 =

=



t∫
tr

(η1r(s) +
∑n

j=1 a
1
jf

j)ds

t∫
tr

(η2r(s) +
∑n

j=1 a
2
jf

j)ds

...
t∫

tr

(ηpr (s) +
∑n

j=1 a
p
jf

j)ds

t∫
tr

(ηp+1
r (s) +

∑n
j=1 a

p+1
j f j)ds


+

+

t∫
tr


b11(s) b12(s) . . . b1n−1(s) b1n(s)
b21(s) b22(s) . . . b2n−1(s) b2n(s)
...

... · · · ...
...

bp1(s) bp2(s) . . . bpn−1(s) bpn(s)

bp+1
1 (s) bp+1

2 (s) . . . bp+1
n−1(s) bp+1

n (s)

 d


w1(s)
w2(s)
...

wn−1(s)
wn(s)

 , (11)

where r = 1, 2, ..., N − 1. From the last equation of (11) we obtain that

t∫
tr

ηp+1
r (s)ds = −

t∫
tr

n∑
j=1

ap+1
j f jds−

n∑
j=1

t∫
tr

bp+1
j (s)dwj(s).

Since the current velocity (the symmetric mean derivative) corresponds to the physical
velocity, from this equation we �nd ηp+1

r (t) by applying the derivative Dw
S to both parts

of the equality (see Remark 1). It is easy to see that the application of mean derivatives
Dw and Dw

∗ (and, consequently, Dw
S ) to the Riemann integrals on the left and right sides

yields the same results ηp+1
r (t) and

∑n
j=1 a

p+1
j f j). Thus, using Lemma 1, we obtain that

ηp+1
r (t) = −

n∑
j=1

ap+1
j f j −

n∑
l=1

bp+1
l

wl(t)

2t
, (12)
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r = 1, 2, ..., N − 1. From the penultimate equation of system (11) we obtain that

ηp+1
r (t)− ηp+1

r (tr) =

t∫
tr

(ηpr (s) +
n∑

j=1

apjf
j)ds+

n∑
l=1

t∫
tr

bpl dw
l(s),

whence, after a reasoning analogous to what is done above, using Lemma 2, we deduce

ηpr = −
n∑

j=1

ap+1
j

df j

dt
−

n∑
l=1

DS(b
p+1
l

wl

2t
)−

n∑
j=1

apjf
j −

n∑
l=1

bpl
wl

2t
,

that is identical to

ηpr = −
n∑

j=1

ap+1
j

df j

dt
−

n∑
j=1

apjf
j −

n∑
l=1

dbp+1
l

dt

wl

2t
+

n∑
l=1

bp+1
l

wl

4t2
−

n∑
l=1

bpl
wl

2t
. (13)

Also for the third equation "from below" of system (11)

ηpr − ηpr (tr) =

t∫
tr

(ηp−1 +
n∑

j=1

ap−1
j f j)ds+

n∑
l=1

t∫
tr

bp−1
l dwl(s)

we have

ηp−1
r = −

n∑
j=1

ap+1
j

d2f j

dt2
−

n∑
j=1

apj
df j

dt
−

n∑
j=1

ap−1
j f j −

n∑
l=1

D2
S(b

p+1
l

wl

2t
)−

−
n∑

l=1

DS(b
p
l

wl

2t
)−

n∑
l=1

bp−1
l

wl

2t
,

which is identical to

ηp−1
r = −

n∑
j=1

ap+1
j

d2f j

dt2
−

n∑
j=1

apj
df j

dt
−

n∑
j=1

ap−1
j f j−

−
n∑

l=1

d2bp+1
l

dt2
wl

2t
+ 2

n∑
l=1

dbp+1
l

dt

wl

4t2
−

n∑
l=1

bp+1
l

3wl

8t3
−

−
n∑

l=1

dbpl
dt

wl

2t
+

n∑
l=1

bpl
wl

4t2
−

n∑
l=1

bp−1
l

wl

2t
.

(14)

In exactly the same way, for 1 ≤ i ≤ p we obtain the recursion formula

ηir(t) = Dw
S η

i+1
k (t)−Dw

S {
t∫

tr

bi1(s)dw
1(s)+

+

t∫
tr

bi2(s)dw
2(s) + . . .+

t∫
tr

bin(s)dw
n(s)} −

n∑
j=1

aijf
j.
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By the method of mathematical induction, we obtain the expression for any ηi(t)

ηir = −
n∑

j=1

ap+1
j

dp+1−if j

dtp+1−i
−

n∑
j=1

apj
dp−if j

dtp−i
−

−
n∑

j=1

ap−1
j

dp−i−1f j

dtp−i−1
− . . .−

n∑
j=1

aijf
j −

n∑
l=1

Dp+1−i
S (bp+1

l

wl

2t
)−

n∑
l=1

Dp−i
S (bpl

wl

2t
)−

−
n∑

l=1

Dp−i−1
S (bp−1

l

wl

2t
)− ...−

n∑
l=1

bil
wl

2t
, 1 ≤ i ≤ p,

that is identical to

ηir = −
p∑

k=i

n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1
−

n∑
j=1

aijf
j −

n∑
l=1

DS(b
i+1
l

wl

2t
)−

−
p∑

m=i+1

n∑
l=1

Dm−i+1
S (bm+1

l

wl

2t
)−

n∑
l=1

bil
wl

2t
, 1 ≤ i ≤ p− 1.

According to the Leibniz formula for di�erentiating the product, we obtain

Dm−i+1
S (bm+1

l

wl

2t
) =

dm−i+1bm+1
l

dtm−i+1

wl

2t
+ bm+1

l Dm−i+1
S

wl

2t
+

+
m−i∑
k=1

Ck
m−i+1

dm−i+1−kbm+1
l

dtm−i+1−k
Dk

S

wl

2t
,

1 ≤ i ≤ p− 1, i+ 1 ≤ m ≤ p, Ck1
n1

=
n1!

k1!(n1 − k1)!
,

and

n∑
l=1

DS(b
i+1
l

wl

2t
) =

n∑
l=1

dbi+1
l

dt

wl

2t
−

n∑
l=1

bi+1
l

wl

4t2
.

Consequently,

ηir = −
p∑

k=i

n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1
−

n∑
j=1

aijf
j −

n∑
l=1

dbi+1
l

dt

wl

2t
+

+
n∑

l=1

bi+1
l

wl

4t2
−

p∑
m=i+1

n∑
l=1

{d
m−i+1bm+1

l

dtm−i+1

wl

2t
+ bm+1

l Dm−i+1
S

wl

2t
+

+
m−i∑
k=1

Ck
m−i+1

dm−i+1−kbm+1
l

dtm−i+1−k
Dk

S

wl

2t
} −

n∑
l=1

bil
wl

2t
, 1 ≤ i ≤ p− 1.
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Taking into account Lemma 2, we obtain the explicit expression for any ηir(t)

ηir = −
p∑

k=i

n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1
−

n∑
j=1

aijf
j −

n∑
l=1

dbi+1
l

dt

wl

2t
+

+
n∑

l=1

bi+1
l

wl

4t2
−

p∑
m=i+1

n∑
l=1

{d
m−i+1bm+1

l

dtm−i+1

wl

2t
+

+bm+1
l (−1)m−i+1

∏m−i+1
j=1 (2j − 1)

2m−i+2

wl(t)

tm−i+2
+

+
m−i∑
k=1

Ck
m−i+1

dm−i+1−kbm+1
l

dtm−i+1−k
(−1)k

∏k
j=1(2j − 1)

2k+1

wl(t)

tk+1
} −

n∑
l=1

bil
wl

2t
,

1 ≤ i ≤ p− 1.

(15)

We note that for equations of the form (10), de�ned on the intervals [0, t1] and [tN , T ],
analogous formulas for solutions take place for 0 < t ≤ t1 and tN ≤ t < T respectively.
In this case, the processes found above, satisfy conditions (8) when the components of the
random variable Gζ̃r(ω) corresponding to Jordan cells with zeros along the main diagonal
in L are equal to zero.

Thus, taking into account what has been said above, for 0 < t < T we obtain formulas
for η(p+1)(t):

ηp+1 = −
n∑

j=1

ap+1
j f j −

n∑
l=1

bp+1
l

wl(t)

2t
,

ηp = −
n∑

j=1

ap+1
j

df j

dt
−

n∑
j=1

apjf
j −

n∑
l=1

dbp+1
l

dt

wl

2t
+

n∑
l=1

bp+1
l

wl

4t2
−

n∑
l=1

bpl
wl

2t
,

ηi = −
p∑

k=i

n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1
−

n∑
j=1

aijf
j −

n∑
l=1

dbi+1
l

dt

wl

2t
+

+
n∑

l=1

bi+1
l

wl

4t2
−

p∑
m=i+1

n∑
l=1

{d
m−i+1bm+1

l

dtm−i+1

wl

2t
+

+bm+1
l (−1)m−i+1

m−i+1∏
j=1

(2j − 1)

2m−i+2

wl(t)

tm−i+2
+

+
m−i∑
k=1

Ck
m−i+1

dm−i+1−kbm+1
l

dtm−i+1−k
(−1)k

∏k
j=1(2j − 1)

2k+1

wl(t)

tk+1
} −

n∑
l=1

bil
wl

2t
,

1 ≤ i ≤ p− 1.

Now we turn to the question of zero initial conditions for the solutions of system
(11) (for r = 0). Taking into account the de�nition of symmetric mean derivatives, it is
not di�cult to see that they are well-posed only on open intervals of time, since in their
construction both time increments to the right and to the left are used. Formulas (12) �
(14) and (15) show that the solutions ηl(t) are described as the sums in which each term

contains the factor of the form
wj(t)

tk
, k ≥ 1. Consequently, the solutions tend to in�nity
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as t → 0; the values of the solutions for t = 0 do not exist. One idea to improve this
situation (as in [17]) is as follows. We �x an arbitrarily small time instant t0 ∈ (0, T ) and
de�ne the function t0(t) by the formula

t0(t) =

{
t0, if 0 ≤ t ≤ t0;

t, if t0 ≤ t.
(16)

The elements
wj(t)

tk
in the formulas (12) � (14) and (15) are replaced by

wj(t)

(t0(t))k
. The

resulting processes at time t = 0 will assume zero values, but they will become solutions
only for t0 ≤ t < T . Note that for two di�erent time instants, t

(1)
0 and t

(2)
0 for t ≥

max(t
(1)
0 , t

(2)
0 ) the values of the corresponding processes coincide.

Thus, summing up what has been said above, we have proved the following statement.

Theorem 1. Let λL̃ + M̃ be a regular pencil of n × n matrices, Q is an n × n matrix,
and f(t) is a su�ciently smooth n-dimensional vector-valued function, 0 ≤ t ≤ T ; let
0 < t1 < · · · < tN < T ; A and AR are nondegenerate matrices of size n × n that reduce
the pencil λL̃ + M̃ to the canonical Kronecker � Weierstrass form (that is, to the quasi-
diagonal form ), L = AL̃AR and M = AM̃AR, G = AQ; let ζ̃r(ω), r = 1, 2, . . . , N
be random variables with values in Rn such that the components of the random variable
Gζ̃r(ω) corresponding to Jordan cells with zeros along the main diagonal in L are equal to
zero; let ζ(t, ω) =

∑N
r=1 ζ̃r(ω)χ(t− tr), where χ is the Heaviside function, equal to zero for

negative values of the argument and 1 for non-negative ones. Then:
1) equation (1) is transformed into the canonical equation (3), which splits into independent
subsystems of the equations;
2) for the subsystem in Rq+1 corresponding to the identity matrix in L and the
nondegenerate (q+1)× (q+1) matrix K in M the following analytic formula for solutions
of the form

ϑ(t) =
N∑
r=1

eK(t−tr)Gζ̃r(ω)χ(t− tr) +

t∫
0

eK(t−τ)Af(τ)dτ +

t∫
0

eK(t−τ)B(q+1)(τ)dw(τ),

takes place where Gζ̃r(ω), Af(t) are the corresponding components of the vectors Gζ̃r(ω)),
Af(t), belonging to Rq+1;
3) for the subsystems corresponding to Jordan blocks in L of size (p + 1) × (p + 1) with
zeros along the main diagonal and unit matrices in M , for 0 < t < T we have formulas
for solutions of the form

ηp+1 = −
n∑

j=1

ap+1
j f j −

n∑
l=1

bp+1
l

wl(t)

2t
,

ηp = −
n∑

j=1

ap+1
j

df j

dt
−

n∑
j=1

apjf
j −

n∑
l=1

dbp+1
l

dt

wl

2t
+

n∑
l=1

bp+1
l

wl

4t2
−

n∑
l=1

bpl
wl

2t
,

ηi = −
p∑

k=i

n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1
−

n∑
j=1

aijf
j −

n∑
l=1

dbi+1
l

dt

wl

2t
+

n∑
l=1

bi+1
l

wl

4t2
−
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−
p∑

m=i+1

n∑
l=1


dm−i+1bm+1

l

dtm−i+1

wl

2t
+ bm+1

l (−1)m−i+1

m−i+1∏
j=1

(2j − 1)

2m−i+2

wl(t)

tm−i+2
+

+
m−i∑
k=1

Ck
m−i+1

dm−i+1−kbm+1
l

dtm−i+1−k
(−1)k

k∏
j=1

(2j − 1)

2k+1

wl(t)

tk+1

−
n∑

l=1

bil
wl

2t
, 1 ≤ i ≤ p− 1;

4) �xing an arbitrarily small time instant t0 > 0, we replace the t by t0(t) in the
denominators of the processes given in step 3) by formula (16) and obtain processes that
take at t = 0 zero values, but they are solutions only for t0 ≤ t < T .
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ÑÒÎÕÀÑÒÈ×ÅÑÊÈÅ ÓÐÀÂÍÅÍÈß ËÅÎÍÒÜÅÂÑÊÎÃÎ ÒÈÏÀ
Ñ ÈÌÏÓËÜÑÍÛÌÈ ÂÎÇÄÅÉÑÒÂÈßÌÈ

Å.Þ. Ìàøêîâ, Þãî-Çàïàäíûé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. Êóðñê,
Ðîññèéñêàÿ Ôåäåðàöèÿ

Ïîä ñòîõàñòè÷åñêèì óðàâíåíèåì ëåîíòüåâñêîãî òèïà ïîíèìàåòñÿ ñïåöèàëüíûé

êëàññ ñòîõàñòè÷åñêèõ äèôôåðåíöèàëüíûõ óðàâíåíèé â ôîðìå Èòî, ó êîòîðûõ â ëå-

âîé ÷àñòè èìååòñÿ âûðîæäåííûé ïîñòîÿííûé ëèíåéíûé îïåðàòîð, à â ïðàâîé ÷àñòè �

íåâûðîæäåííûé ïîñòîÿííûé ëèíåéíûé îïåðàòîð. Êðîìå ýòîãî, â ïðàâîé ÷àñòè èìååòñÿ

äåòåðìèíèðîâàííîå ñëàãàåìîå, êîòîðîå çàâèñèò òîëüêî îò âðåìåíè, à òàêæå èìïóëüñíûå

âîçäåéñòâèÿ. Ïðåäïîëàãàåòñÿ, ÷òî êîýôôèöèåíò äèôôóçèè äàííîé ñèñòåìû çàäàåòñÿ

êâàäðàòíîé ìàòðèöåé, çàâèñÿùåé òîëüêî îò âðåìåíè. Äëÿ èçó÷åíèÿ ðàññìàòðèâàåìûõ

óðàâíåíèé òðåáóåòñÿ ðàññìîòðåíèå ïðîèçâîäíûõ äîñòàòî÷íî âûñîêèõ ïîðÿäêîâ îò ñâî-

áîäíûõ ÷ëåíîâ, âêëþ÷àÿ âèíåðîâñêèé ïðîöåññ. Â ñâÿçè ñ ýòèì äëÿ äèôôåðåíöèðîâàíèÿ

âèíåðîâñêîãî ïðîöåññà ìû ïðèìåíÿåì àïïàðàò ïðîèçâîäíûõ â ñðåäíåì ïî Íåëüñîíó îò

ñëó÷àéíûõ ïðîöåññîâ, ÷òî ïîçâîëÿåò ïðè èññëåäîâàíèè óðàâíåíèÿ íå ïðèìåíÿòü àïïà-

ðàò òåîðèè îáîáùåííûõ ôóíêöèé. Â ðåçóëüòàòå ïîëó÷àþòñÿ àíàëèòè÷åñêèå ôîðìóëû

äëÿ ðåøåíèé óðàâíåíèÿ â òåðìèíàõ ïðîèçâîäíûõ â ñðåäíåì ñëó÷àéíûõ ïðîöåññîâ.

Êëþ÷åâûå ñëîâà: ïðîèçâîäíàÿ â ñðåäíåì; òåêóùàÿ ñêîðîñòü; âèíåðîâñêèé ïðîöåññ;

ñòîõàñòè÷åñêîå óðàâíåíèå ëåîíòüåâñêîãî òèïà.
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