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By a stochastic Leontief type equation we mean a special class of stochastic differential
equations in the Ito form, in which there is a degenerate constant linear operator in the
left-hand side and a non-degenerate constant linear operator in the right-hand side. In
addition, in the right-hand side there is a deterministic term that depends only on time, as
well as impulse effects. It is assumed that the diffusion coefficient of this system is given by
a square matrix, which depends only on time. To study the equations under consideration,
it is required to consider derivatives of sufficiently high orders from the free terms, including
the Wiener process. In connection with this, to differentiate the Wiener process, we apply
the machinery of Nelson mean derivatives of random processes, which makes it possible
to avoid using the theory of generalized functions to the study of equations. As a result,
analytical formulas are obtained for solving the equation in terms of mean derivatives of
random processes.

Keywords: mean derivative; current velocity; Wiener process; stochastic Leontief type
equation.

Introduction
We study the system of stochastic differential equations in R"™ of the form

t

LE) = M/f(s)ds +/f(s)ds +Q¢(t) + /P(s)dw(s),O <t<T,

where L and M are degenerate and nondegenerate n x n matrices, respectively, forming a
regular pencil, ) is an n X n matrix, {(¢) is an n-dimensional process of jumps, P(t) is a
sufficiently smooth n x n matrix, f(t) is a sufficiently smooth time-dependent deterministic
vector function, w(t) is a Wiener process, £(t) is the random process we are looking for.

With the use of systems of the Leontief type in the works by A.L. Shestakov,
G.A. Sviridyuk and A.V. Keller [1-3] dynamic distortion of signals in radio devices is
investigated. In the works by O. Schein, G. Denk [4], T. Sickenberger, R. Winkler [5,6] the
systems under consideration arise in the mathematical modelling of oscillations and electric
circuits. These equations arise in the works of L.A. Vlasenko et al [7,8] in the mathematical
modelling of the dynamics of corporation enterprises when using investment. We also
mention the work by A.A. Belova, A.P. Kurdyukova [9], in which numerous applications
of the systems under consideration are described.

To study this class of equations, it is required to consider higher-order derivatives of
free terms, in this case the deterministic term and the Wiener process or white noise. It
is known that the derivatives of the Wiener process exist only in the sense of generalized
functions, which are extremely difficult to use in these equations. This circumstance makes
a direct investigation of our system complicated. In this connection, we note the work by
L.A. Vlasenko and others [8], in which restrictions on the coefficients of the equation are
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introduced, which make it possible not to use the "derivatives" of the Wiener process.
Here we carry out the study of the equation without resorting to these limitations.

Following [10,11], in which this class of equations with a variable diffusion coefficient
and without impulsive influences on the right-hand side was studied, we use the machinery
of the Nelson mean derivatives of random processes to study the solutions of the equations
under consideration, for the description of which generalized functions are not applied.
Namely, we apply the symmetric mean derivatives (the current velocities) of the Wiener
process. Current velocities, according to the general ideology of mean derivatives, are
natural analogues of the physical velocities of deterministic processes. As a result, for
the system under consideration, we obtain physically meaningful formulas for solutions in
terms of symmetric mean derivatives of random processes.

1. Mean Derivatives

We consider the stochastic process (t) in R™, t € [0, T], defined on a certain probability
space (2, F,P) and such that £(¢) is an L;-random element for every t. It is known that
every such a process generates a family of o-subalgebras of o-algebra F called "present"
and denoted by /\/f. It is the minimal o-algebra that includes all preimages of Borel sets
from R". We suppose ./\ftE to be complete, that is, it is completed by all sets of probability
zZero.

For convenience, we denote the conditional expectation E(-|NF) relative to the
"present" N for £(t) by E*. The usual ("unconditional") mathematical expectation is
denoted by symbol F.

Generally speaking, almost all sample trajectories of the process &(t) are not
differentiable, so that its derivatives exist only in the sense of generalized functions.
To avoid using generalized functions according to Nelson [12-14], we give the following
definition:

Definition 1. [15]
(i) The mean forward derivative DE(L) of the process £(t) al the time moment t is an
Lq-random element of the form

pe(t) = gim gD S,

where the limit is assumed to exist in L1(Q2, F,P) and At — 40 means that At tends to
0 and At > 0.
(11) The mean backward derivative D.£(t) of the process £(t) atl timet is Ly-random variable

Dt = Jim pi =20

),

where (as in (i)) the limit is assumed to exist in L1(2, F,P) and At — +0 means that At
tends to 0 and At > 0.

It should be noted that, in general, DE(t) # D.E(t), but if, for example, £(t) almost
surely has smooth sample trajectories, these derivatives obviously coincide.
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From the properties of conditional expectation (see [18]) it follows that DE(t) and
D.&(t) can be represented as superpositions of £(t) and Borel vector fields (regressions)

§(t + At) — &(1)

Yo(t,z) = lim B ~ €(t) = )
Vo) = dim B0 o)

on R", that is, DE(t) = YO(t,£(¢)) and D,£(t) = Y2(t, £(1)).

Definition 2. [15] The derivative Dg = 3(D + D.) is called the symmetric derivative in
the mean. The derivative Dy = %(D — D,) is called the antisymmetric derivative in the
mean.

We consider the vector fields v* (¢, z) = $(VO(t,2)+Y2(¢,z)) and u®(t, z) = 2 (YO(t, ) —
Y2(t, ).

Definition 3. [15]v%(¢)
§(t); ub(t) = ut(t,¢(t))

The current velocity is a direct analogue of the ordinary physical velocity of
deterministic processes for random processes (see [15]). The osmotic velocity measures
how fast the "randomness" of the process grows.

We denote by the symbol w(t) the Wiener process [15]. It plays a decisive role in our
constructions. The following technical statements take place.

v&(t,E(t)) = Dsé&(t) is called the current velocity of the process
D 4&(t) is called the osmotic velocity of the process £(t).

Lemma 1. [16]| Let w(t) be an n-dimensional Wiener process, P(t) be a sufficiently smooth
k x n matriz, t € (0,T). Then for any t we have the formula

t

D / P(s)dw(s) = P(¢)

0

w(t)
2

Lemma 2. [15,17] Fort € (0,T), the following equalities hold

Duw(t) = 0, Dow(t) = @ Dgw(t) = %f)
For the integer k > 2
k—1
[T(2¢ —1) w(®)

Dgw(t) = (_1)k_1 = ok te

2. Main Result

As it is already mentioned in the introduction, we consider the stochastic differential
equation in R" of the form

t

LE(t) = M/g(s)ds+/f(s)ds+c2<(t) +/P(s)dw(s), 0<t<T, (1)

0
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where L and M are degenerate and nondegenerate n X n matrices, respectively, AL+ M,
A € R is a regular pencil of matrices, ) is an n X n matrix, ((¢) is an n-dimensional
process of jumps, P(t) is a sufficiently smooth n x n matrix, f(¢) is a sufficiently smooth
time-dependent deterministic vector function, w(t) is a Wiener process, £(t) is the random
process that we are looking for. The process of jumps ((t) = ((t,w) is defined as follows

N
Ctw) = Glwx(t—t), 0<ty < <ty <T,
r=1

where x is the Heaviside function, which is zero for negative values of the argument and
1 for nonnegative, (,.(w) are random variables with values in R".

From the form of (1) it is clear that (for simplicity) the initial condition for the solution
of (1) is assumed to be of the form

£(0,w) =0. (2)
From the very beginning we say that this condition is not satisfied for the solutions
constructed below. Therefore, we approximate solutions by processes that satisfy this
initial condition, but become solutions only from a certain (arbitrarily small) time instant
to > 0 (see below).
We seek the formulas for the solutions of the problem (1), (2) among random processes
&(t,w), which satisfy (in the sense, as described below) the differential equations

Le(t) — Le0) :M/g(s)ds+/f(s)ds+/P(s)dw<s), 0<t<t,

Le(t) - Let) = [ e(o)as+ [ f(s)ds+ [ Ploydu(s), tr <t <t

t

Lé(t) - Lé(ty) = O / E(s)ds + / f(s)ds + / P(s)dw(s), ty <t < T,

tn

forall r=1,2,..., N — 1, at the points ¢, they satisfy the equalities
if(tr +0,w) — if(tr —0,w) = er(w),r =12,...,N,

and at the initial instant of time ¢ = 0 satisfy the initial condition (2).
Thus, the process £(t) for the solution of the problem (1), (2) is determined sequentially
for r =0,1,..., N through random processes &.(t), which satisfy the equations

L& (t) — L& (0) = M/§o(s)ds—|—/f(s)ds+/P(s)dw(s), 0<t<t, (r=0),

(28

L) = L& t) = 01 [ &)+ [ ()i + [ Ployduls), b <t <t

t

ESN(t) — iﬁN(tN) = ]\Z/&V(s)ds + /f(s)ds + /P(s)dw(s), ty <t <T,

tn
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r=1,2,...,N — 1, where

£(0) =0, L& (L) = LE, 1 (ty,w) + QCo(w), r=1,...,N.

It is not hard to see, that equation (1) in a general form is inconvenient for studying,
therefore we bring it to some canonical form. For a regular matrix pencil there exists
a Kronecker-Weierstrass transformation (described by a pair of nondegenerate matrices
(operators) A = (a%) and Ag) under which the matrices L and M are reduced to
quasidiagonal form (see [19]), and, with the corresponding numbering of the basis vectors,
in L = ALAp, first along the main diagonal there are Jordan cells with zeros along the
diagonal, and the last matrix along the main diagonal is the unit matrix. In M = AM Ag,
in the rows corresponding to the Jordan blocks there is a unit matrix, and the last block
along the main diagonal is a certain non-degenerate matrix. We give the matrices L and
M in a general explicit form:

01 00O0O0 0 00 0
001000 0 00 0
000010 000 0
000O0O0O0 000 0
00 0O0O0O0 1 00 0
L=10 00 0 0 0O 010 01,
00 0O0O0 0 00 0
000O0O 010 0
000O0O0O0 0 01 0
000O0O0O0 000 1
100 000O0O00O0 0 0 0
01 0000O0O0O 0 0 0
0010O00O0O0O 0 0 0
0001O00O0O0O 0 0 0
000O01O0O0O 0 0 0
000O0O0OT1TO0O 0 0 0
M=100000010 0 0 0
00 000 a? a7, an
0 0 0 0 ap=®™ anit an—atl
00000000 a', a,, ... a
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Thus, after applying the Kronecker — Weierstrass transformation, equation (1) takes
the following form

Ln(t) = /Mn(s)ds—i—/Af(s)ds—i—AQC(t) —|—/B(s)dw(s), (3)
n(0) =0, (4)

where B(t) = AP(t), n(t) = AR'€(t). Then, taking into account what has been said
above, the formulas for the solutions 7n(t) of problem (3), (4) are determined successively
for r =0,1,..., N through random processes 7,(t), which satisfy the equations

Lio(t) — Lo 0) = /Mno(s)ds+/Af(s)ds+/B(s)dw(s), 0o<t<t, (5

Ln,(t) — Ln,.(t,) = /Mm(s)ds + /Af(s)ds + /B(s)dw(s), tr <t <tyy1, (6)

Ly (t) — Ly (ty) = /MUN(S)dS + /Af(s)ds + /B(S)dw(s)7 tn<t<T, (7)
r=1,...,N —1, where

770(0) =0, Lnr(tr) = Lnr—l(traw) + Gér(w)a r=1,...,N (8)

and G = AQ.

Remark 1. As it is noted above, derivatives of free terms (including the Wiener process)
are needed to construct the process describing the model given by equations (5), (6) and
(7). The derivatives of the Wiener process exist only in the sense of generalized functions.
Therefore, in order to avoid the use of generalized functions, we use the symmetric mean
derivatives (current velocities) D¢ of the Wiener process to describe the model given by
(5), (6) and (7) processes. In this paper, the o-algebra "present" of the Wiener process
will be used to calculate higher-order symmetric mean derivatives. Note that to calculate
the mean derivatives, one can also use some other o-algebra, but then the formulas for
computing higher-order symmetric derivatives of the Wiener process will be changed.

Taking into account the structure of matrices L and M, it is not difficult to see that
problems (3), (4) and (5) — (8) break up into several independent systems of equations.
The "bottom" of them corresponds to the unit segment in the diagonal in L and the block
consisting of a matrix in the lower right corner of M. Denote the last matrix by K, and
denote by ¥(t) the vector of dimension ¢+ 1, composed of the last ¢+ 1 coordinates of the
vector n(t). Then ¥,.(t) is described by the equation

t t

9y() — Ou(t,) = K / 9,(s)ds + / Af(s)ds + / Bigsn(s)du(s). (9)

tr tr
ty <t <trq,r=12.N—1
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in RI™. Here B(y41)(t) is the matrix composed of the last ¢ 4+ 1 rows of the matrix B(t),
w(t) is (q¢ + 1)-dimensional Wiener process composed of the last ¢ + 1 coordinates of the
Wiener process in R", Af(t) is (¢ + 1)-dimensional vector composed of the last g + 1
coordinates of the vector Af(t). For equation (9), the analytic formula for solutions is
known (see [20]):

t t

0. (t) = K9 (1) + /6K(t_T)Af(T)dT—|— /eK(t_T)B(qul)(T)dlU(T).

tr tr

Note that for equations of the form (9) defined on the intervals [0, 1] and [tx, T, analogous
formulas hold for solutions. Summing all ¥,(t), we obtain the expression for ¥(t)

N
=) HEIGG ()Xt~ t,)+
r=1

t t

+/€K(t_7)Af<T)dT—|-/GK(t_T)B(‘H‘l)(T)dw(T)’

0 0

where Gé(wl is (¢ + 1)-dimensional vector composed from the last ¢ + 1 coordinates of
the vector G¢,(w).

The other systems correspond to Jordan cells in L and unit matrices of the
corresponding dimension chosen from the rows and columns of M. We consider this case
by the example of the (p+1) x (p+ 1) matrix (the Jordan cell) N in the upper left corner
of L

010 0
0 01 0
N=|: :
000 1
000 0

and the corresponding identity matrix in M. We denote by (Af),+1 the (p+1)-dimensional
vector composed of the first p + 1 coordinates of the vector Af(t), by np41)(t) — the
(p + 1)-dimensional vector composed from the first p + 1 coordinates of the vector 7(t),
and wp41)(t) is the vector consisting of the first p 4 1 coordinates of the vector w(t). It is
easy to see that the coordinates of the vector Af have the form (Af)" = 377 a’f7. We
denote by B(,41)(t) the matrix

bi(t)  ba(t) b1 (t) by (t)
bi(t)  b3(t) bna(t)  B(t)
B(p—l—l)() :
b]f(t) byt) oo by (1) bR()
AR O A (A (I AN )

composed of the first p + 1 rows of the matrix B(t).
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Then (1,)(p+1)(%) is a solution of equation
t

N(nr)(p+1)(t) - N(nr)(p—&-l)(tr) = /((777")(1?-1—1)(5) + (Af>(p+1)(5))d3+

tr
t

+ / Bpi1y(s)dw(s), (10)

28
t<t<tp,r=12 . N-1.

In the coordinate form, this equation looks as follows:

010 ... 0\ [ n 010 ... 0\ /[ nt)
001 ...0]|][ n2 001 ...0|[ &)
000 1 e (t) 000 ...1 e (tr)
000 0/ \nrti(t) 000 ...0/ \npptit,)

t

J (e () + 325y a5 f7)ds

28
t

J (07 (s) + 225y aif7)ds

= ' —|—
fo <>+zg a2 fi)ds
j( nE () + ST, f)ds
B(s)  B(s) .. BLa(s) BA(s)\ [ wi(s)
| owts) Bs) . B Bis) | [ wre)
+ / : : : : d : , (11)
Dl wes) B e we) | e
s BT L (s (s \ wn(s)

where r = 1,2, ..., N — 1. From the last equation of (11) we obtain that

t

[ = - / Z @ fids — / B ()du ()

28

Since the current velocity (the symmetric mean derivative) corresponds to the physical
velocity, from this equation we find n?*™(¢) by applying the derivative D¥ to both parts
of the equality (see Remark 1). It is easy to see that the application of mean derivatives
D* and DY (and, consequently, D¥) to the Riemann integrals on the left and right sides

yields the same results 72*!(t) and D77, f“ 7). Thus, using Lemma 1, we obtain that
n !
w0 == a3y (12)
j=1 =1
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r=1,2,..., N — 1. From the penultimate equation of system (11) we obtain that

W) - W“()L/m +§jﬂﬂ@+§:/mm

whence, after a reasoning analogous to what is done above, using Lemma 2, we deduce

n

#= =SS D) S - Y,
j=1 =1

j=1

that is identical to

n

np:_zap-i-lij_iapfj_ n dbeFlw pr-i-l pr (13)
r Idt J dt 2t 42 Lot

j=1 j=1 =1

Also for the third equation "from below" of system (11)

= (t) = /P1+Z”1fﬂds+2/b” tdw' (s

28

we have

n

SRR S A Zaizft > ZDsb”“w

J=1 J=1 Jj=1

-3 ps lzt Zl—ﬂ,
=1

which is identical to

n

AN R
-1 _ +1 1
U ——ZCL? W Z% 7 Z i -
7j=1 1
PO w dbp w 13w
_Z ar o = dt 412 Z’ 8t3 (14)

by _
_Z dt ;Ut bezlt? pr

In exactly the same way, for 1 < i < p we obtain the recursion formula

mw=WWW—wdﬁwW@+

t

+/b§(s)dw2(s) /bl Za fo.

tr tr
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By the method of mathematical induction, we obtain the expression for any 7 (t)

n

, drti=ifi n ar=ifi
i p+1v  J p”  J
= Z a; dtp+1—i Z a; dtr—i
i=1

J=1 J=
n dP=i=1 fi & w! - w!
-1 i 1—i 1
S e e 2 = DD ) = S D)~
j=1 j=1 =1 =1
n ! n !
Sttt Yy o ST <<
lzl S ( l Qt) lzl l2t7 >t1>p,
that is identical to
p n k—i+1 n
) d fJ w!
i k+1 'L+1
nr__z a; Akt Zafj ZD (b}
k=i j=1
_Zszz—Hbm—H Zb 1<i<p-—1.
m=i+1 [=1

According to the Leibniz formula for differentiating the product, we obtain

l m—i+1 m+1 l
m—i mi1 W d b m m—i
D +1(b +1 2t) dtm_iil 2t b +1D +1Z+
dmfi+1fkb;n+1 L wl

k
+ Z Ot grm—iri-n D5y
k=1

. . Tll!
1<i<p—1l,i+1<m<p, O = ———
- _p ) _|_ — —p7 ni k1|(n1 _k1)|7

and
z": bz-‘rlw bH—l z+1w
s A 4t?
Consequently,
p n k—i+1 n i1,
. d fJ db;
v k+12  J J_ _

dm— z+1bm+1 l l

+ Z bz+1 4t2 Z Z{ p T UJ bm+1Dm l+1§_'_

m=i+1 [=1
dm—i+1—kbm+1

Ck D il L 1<i<p-—1.
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Taking into account Lemma 2, we obtain the explicit expression for any 7’ (¢)

L dk—i+1f] n dszrl
_;;afﬂ dtk—i+1 Z fj z_; dt 2t+

dm i+1 bm-l-l wl

+Zb2+14t2 o Z Z{ dpm—i+1 2t+

m=i+1 l+11 (15)
_|_bm+1(_1)mfz+1H (2'] B ]') (t)
2m 42 tm 42
m—i qm—itl— kbm—l—l H (2]
k kll5=1
+Zom i+l Jpm—it1—k ( 1) 9k+1 tk“} Zbl 2%’
k=1
1<i<p-1.

We note that for equations of the form (10), defined on the intervals [0,¢1] and [ty, T,
analogous formulas for solutions take place for 0 <t < ¢; and txy <t < T respectively.
In this case, the processes found above, satisfy conditions (8) when the components of the
random variable G(,.(w) corresponding to Jordan cells with zeros along the main diagonal
in L are equal to zero.

Thus, taking into account what has been said above, for 0 < ¢ < T we obtain formulas

for ngp1)(2):

Pl = i AL i 1 wh(t)
I Lot
J=1 =1
- df - ATt & w!
_ p+1 pri 1w s
== Z a; dt Zajfj dt 2t+zl 4t2 Zlgt
j=1 j=1 =1 =1
b n k—i n n bi+1 wl
. Y j -
ZZ“J‘ dtk z+1 Za = dt 2t+
k=1 ]—1
’LU dm H—lbm-l-l l
bz+1 _ R
m—i+1
27 —1
131 =1

+b;n+1<_1)m—i+1 J +

2m—i+2 tm—i+2

dm—i+l=kpmtl kH§=1(2j — 1) wl(t) n biwz
Z m—itl  pm—it1—k ( 1) ok+1 th+1 }_Z 12_25’
I=1

1<:<p—1.

Now we turn to the question of zero initial conditions for the solutions of system
(11) (for r = 0). Taking into account the definition of symmetric mean derivatives, it is
not difficult to see that they are well-posed only on open intervals of time, since in their
construction both time increments to the right and to the left are used. Formulas (12) —
(14) and (15) show that the solutions n'(t) are described as the sums in which each term

w (t)
tk

, k > 1. Consequently, the solutions tend to infinity
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as t — 0; the values of the solutions for ¢ = 0 do not exist. One idea to improve this
situation (as in [17]) is as follows. We fix an arbitrarily small time instant t, € (0,7") and
define the function ¢¢(t) by the formula

to, if 0 <t < {y:
to(t) =4 O " == (16)
tifty <t

w(t)

tk

w (t
in the formulas (12) — (14) and (15) are replaced by T (i)i . The
0
resulting processes at time ¢ = 0 will assume zero values, but they will become solutions
only for tp < t < T. Note that for two different time instants, t(()) and to for t >

max(t(() ),t ) the values of the corresponding processes coincide.

Thus, summing up what has been said above, we have proved the following statement.

The elements

Theorem 1. Let AL + M be a reqular pencil of n X n matrices, Q) is an n X n matriz,
and f(t) is a sufficiently smooth n-dimensional vector-valued function, 0 < t < T; let
0<ty <<ty <T; A and Ar are nondegenerate matrices of size n X n that reduce
the pencil \L + M to the canonical Kronecker — Weierstrass formfthat 18, to the quasi-
diagonal form ), L = ALAR and M = AMAg, G = AQ; let (w), r = 1,2,...,N
be random variables with values in R" such that the components of the random variable
G(-(w) corresponding to Jordan cells with zeros along the main diagonal in L are equal to
zero; let ((t,w) = 27{\[:1 g:r(w)x(t —t,.), where x is the Heaviside function, equal to zero for
negative values of the argument and 1 for non-negative ones. Then:

1) equation (1) is transformed into the canonical equation (3), which splits into independent
subsystems of the equations;

2) for the subsystem in RIT' corresponding to the identity matriz in L and the
nondegenerate (q+1) X (¢+1) matriz K in M the following analytic formula for solutions
of the form

t t

N ~
= Yo KGG e~ ) + [ FAfr [T B .y ()du()

0 0

takes place where Gf,.(w), Af(t) are the corresponding components of the vectors Gf,.(w)),
Af(t), belonging to RI™;
3) for the subsystems corresponding to Jordan blocks in L of size (p + 1) x (p + 1) with
zeros along the main diagonal and unit matrices in M, for 0 < t < T we have formulas
for solutions of the form

p+1 Zaerlfj Z prw

p__i P-H%j_zn: pfj_ . db?—i_l pr—l-l Z
= GoTgr T L dt 2t ; boyq2 l2t

=1 j=1 =1 =1
p n k—i+1 rj n H—l n l
oy Z i Z b + e
(LT kit dt 2t Loz
k=i j=1 =1 =1
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m—i+1

o | gmeitipl II (2j-1)

!
m-+1 m—i+1 Jj=1 w (t)
o m§+1 1:21 dgm—itl  9f +0/" (=) gm—i+2 pm—i+2

k

m—i ) dmfiJrlfkb;ﬂ-&-l kjl;ll(Qj - 1) wl(t) .
+ k; Ot g ) 1 ( l;b@, 1<i<p-—1;

4) fizing an arbitrarily small time instant to > 0, we replace the t by to(t) in the
denominators of the processes given in step 8) by formula (16) and obtain processes that
take at t = 0 zero values, but they are solutions only forto <t <T.
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CTOXACTUNYECKUE YPABHEHUN{ JIEOHTBEBCKOI'O TUIIA
C UMITYJIbCHBIMU BO3JENCTBUSAMU

E.FO. Mawxos, KOro-3amaanplii rocyaapcTBeHHBIH yHUBEpCuTeT, I. Kypek,
Poccuiickag Peneparus

IMom croxacTuueckuM ypaBHEHWEM JIEOHTHEBCKOT'O THITA, MOHWUMAETCS CIEIHAJIBHBIN
KJIaCC CTOXacTudeckux audepeHnuaabubix ypasuenuit B ¢popme UTo, y KOTOPHIX B Jie-
BOI 9aCTW AMeeTCA BBIPOKIAEHHBIN ITOCTOAHHBIN JIUHENHBIA ONepaTop, & B IPaBoil 4acTu —
HEBBIPOXK IEHHBIN MOCTOAHHBIHN JTUHEHHBIH omrepaTop. Kpome 3Toro, B mpapoi 9acTh HMEeTC st
JEeTEPMUHUPOBAHHOE CJIAraeMoe, KOTOPOE 3aBHUCUT TOJIHKO OT BPEMEHH, 8 TAKIKE UMITYJIbCHBIE
BozaeiicTBust. [Ipemnonaraercs, uro koadduiment auddy3nn manHoi cucTeMbl 3a7aeTCst
KB IPATHOM MaTPUIEil, 3aBUCSIIEH TOIBKO OT Bpemenu. /s u3ydeHus paccMaTpUBAEMbIX
ypaBHeHUl Tpebyercs pacCMOTPEHHE MPOU3BOIHBIX JOCTATOYHO BBICOKHUX MOPSIIKOB OT CBO-
OOIHBIX WIEHOB, BKIOYas BUHEPOBCKUI mporecc. B cBsa3u ¢ atum mis anddepeHmpoBaHst
BUHEPOBCKOTO TIPOIIECCA MbI IIPUMEHSEM AIMapaT IPOU3BOIHBIX B cpeaueM mo Hembcony or
CJIy9afHBIX [IPOIECCOB, YTO IMO3BOJIAET [IPU MCCJEIOBAHNY YDABHEHUs HE IPUMEHSATDH AIllla-
paT Teopuu 0b600ImIeHHbIX hyHKIHA. B pesynprare mogyuarorcs aHaauTuueckue (hopMysIb
JIJIS PEIeHnii ypaBHeHWs B TEPMWHAX MPOU3BOIHBIX B CPEIHEM CJIYUANHBIX ITPOIECCOB.

Karouesvie cao6a: npouseodnas 6 cpednem; mexyuias ckopocms; GUHEPOSCKUll NPoUece;

CTNOTACTMUMECKOE YPABHEHUE NEOHTNHBEBCKO20 TIMUNA.
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