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A mathematical model is proposed for describing a wide class of radiating or memory
oscillators. As a basic equation in this model is an integro-differential equation of Voltaire
type with difference kernels — memory functions, which were chosen by power functions. This
choice is due, on the one hand, to broad applications of power law and fractal properties of
processes in nature, and on the other hand it makes it possible to apply the mathematical
apparatus of fractional calculus. Next, the model integro-differential equation was written
in terms of derivatives of fractional Gerasimov — Caputo orders. Using approximations of
operators of fractional orders, a non-local explicit finite-difference scheme was compiled that
gives a numerical solution to the proposed model. With the help of lemmas and theorems,
the conditions for stability and convergence of the resulting scheme are formulated.
Examples of the work of a numerical algorithm for some hereditary oscillators such as
Duffing, Airy and others are given, their oscillograms and phase trajectories are constructed.

Keywords: mathematical model; Cauchy problem; heredity; derivative of fractional
order; finite-difference scheme; stability; convergence; oscillograms; phase trajectory.

Introduction

In the paper of the Italian mathematician Vito Volterra [1]|, the notion of heredity
(memory), a property of a dynamical system characterized by non locality in time, is
introduced, which consists in the dependence of its current state on a finite number of
previous states. V. Volterra investigated the hereditary oscillator — a vibration system
with memory, which was written in the form of an integro-differential equation with a
difference kernel, a function of memory. Further, for such an oscillator, Volterra derived the
law of total energy, in which an additional term appeared, responsible for the dissipation
of energy in the vibrational system. This fact was confirmed in subsequent works.

In papers [2-9| fractal oscillators were considered, which represent the class of
hereditary oscillators with a power-law function of memory. The peculiarity of such
oscillators is that their mathematical description can be reduced to differential equations
with non-local derivatives of fractional constant orders, which are investigated within the
framework of the theory of fractional calculus [10].

In papers [2,4-7,9] models of fractal linear oscillators were investigated in the sense
of the Gerasimov — Caputo derivative, and in papers [3,8] — in the sense of the Riemann —
Liouville derivative. Analytical solutions of model equations in terms of a special function
of Mittag — Leffler type and generalized Wright-type function, oscillograms and phase
trajectories are constructed. It is shown that in the regime of free oscillations, the presence
of memory effects in the system leads to attenuation of oscillations as a result of energy
dissipation, and with allowance for external periodic action, it is possible to stabilize the
amplitude of the oscillations, with the phase trajectories reaching the limit cycle and also
the resonance effect.
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In a monograph by the Slovak mathematician I. Petras [3|, the fractal nonlinear
oscillator models whose differential equations contained fractional derivatives in the sense
of Riemann — Liouville were considered and analyzed using numerical methods and
considered the stability of the rest point of oscillatory systems. However, the stability
and convergence of numerical methods have not been considered.

A further continuation of the investigation of hereditarity oscillators is associated with
the introduction of the derivatives of fractional variable orders in the model equations. This
is due to the fact that the orders of fractional derivatives are related to the properties of the
medium in which this or that process takes place and changes with time under the influence
of external influence. Therefore, papers [5-9] proposed the models of fractal nonlinear
oscillators were proposed and investigated using explicit finite-difference schemes, whose
equations contain both the derivatives of the constants, and variable fractional orders
of the Gerasimov — Caputo and Riemann — Liouville types. With the help of computer
experiments, the convergence of finite-difference schemes was shown and estimates of the
computational accuracy of the method were obtained, oscillograms and phase trajectories
were constructed. However, the questions of stability and convergence were not formulated
in the form of corresponding theorems.

From the analysis of the above publications on the study of hereditary oscillator, we
can conclude that the main tool for their study is numerical methods, for example, finite-
difference schemes. In most cases, the authors leave without attention the questions of
stability and convergence of finite-difference schemes, and even if they touch, then without
formulating the corresponding theorems and proofs. Therefore, the goal of the present
paper is to construct a finite-difference scheme for a wide class of hereditary (fractal) linear
and nonlinear oscillators, and to prove its stability and convergence, formulate results in
the form of corresponding theorems, and study finite-difference schemes on specific test
examples.

1. Formulation of the Problem

Consider the following model integro-differential equation for the function z () €
C3(0,T), where T > 0:

t

t
[ =i ydn 3 [ Kot =i ydn=f @ (0).0), 0
0 0
where 7 (t) = d?z/dt*,z (t) = dz/dt, A > 0 — given constant, functions K (t —n) and
K, (t — n) — difference kernels in equation (1) will be called memory functions, since they
define the notion of heredity (memory) [1].

Equation (1) describes a wide class of hereditary, depending on the form of the right-
hand side (function f (z (t),t)) of linear or non-linear oscillators.

Definition 1. A nonlinear function f(x(t),t) on the right-hand side of equation (1)
satisfies a Lipschitz condition with respect to a variable x (t):

|f (1 (£) ,8) = f (22 (t) 1) < Lz () — 2 (B)] (2)
L — Lipschitz constant.
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Equation (1) describes a broad class of hereditary nonlinear oscillators, depending on
the form of the function f (z (t),t) on its right-hand side and the parameter A\ have the
meaning of the coefficient of friction.

Remark 1. Note that the memory functions K; (t —n) and K, (t —n) can be chosen
arbitrarily, depending on the conditions of the particular problem. We will choose these
functions power-law, since power laws are often found in various fields of knowledge [11].

We choose the memory functions K (t —n) and Ky (¢ —n) in the form:
(t—m)'"" (t—m) "
F2-p(t) L2=~y()

where v (t), 5 (t) € C'[0,T], I' (t) — Euler-gamma function.
Taking into account relation (3) we obtain the following definition.

Ki(t—mn) = Ky(t—n) = (3)

Definition 2. Derivatives of fractional variables of orders ((t) and ~y (t) Gerasimov —
Caputo type we call the following operators of fractional differentiation:

5(1) 1 [ E )y _ 1 [ () d
P ) = F(2—6(t))0/(t—n) e O () = F(l—fy(t))o/(t_n)v(t)' (4)

Remark 2. We note that in the case when the functions /5 (¢) and v (¢) in the relations
(4) are constants, we arrive at the definitions of the fractional derivative in the sense of
Gerasimov — Caputo [12| and in the case when these constants 8 = 2 and v = 1 the
operators of fractional differentiation (4) become classical derivatives of the second and
first orders.

Taking into account Definition 2 the model equation (1) can be rewritten in a more
compact form:

ooz () + A (n) = f (2 (1) ). (5)

For equation (5), the initial conditions in the local formulation are valid:
z(0) = ap, & (0) = ay, (6)

where oy and «; — given constants. As a result, we arrive at the Cauchy problem (5) and
(6), which we will investigate.

2. Explicit Finite-Difference Scheme

We construct an explicit finite-difference scheme for the Cauchy problem (5), (6). We
divide the time interval [0, 7] into N equal parts with a step 7 = T'/N. We introduce the
grid function z (ty) = xy, where ¢, = kT, k = 1,..., N — 1. The derivatives of the variables
of fractional orders in equation (5) are approximated according to the relations in [12]:

k—1
O () = Ak Y agp (@ ji1 = 2055 + 05 1) (7)
J=0
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k—1

O ()~ Bi Y big (whju1 — 1),

Jj=0

where the weight coefficients have the form: a;;, = (5 + 1) P — 26k big= (G +1) "=
—Br A7k
1<%, A = ——— B, = = Here to shorten th d: B(ty) =
J ; Ak T (35 % o (2= ) ere to shorten the record: [ (t) B,
Y (tk) = V-
Taking into account relations (7), the Cauchy problem (5), (6) in the difference
formulation will have the form:

k—1 k—1
A gk (e = 20+ 2k 0) + Be bk (e —ani1) = fro  (8)
=0 =0

where o = ag, 1 = a1 + Tap. Here to shorten the record fp = f (zx,tx). We write the
problem (8) explicitly:

Thr1 = gy (2Akzy — (Ap — By) 2p1) —

k—1 k—1 9
A
ey ];1 gk (Thjn — 2Tp—j + Thj1) — 5 ; bik (Th—j1 — Th—j1) + fi- ©)

We note that the weight coefficients a;; and b;; have properties, which we formulate
in the form of the following lemmas.

Lemma 1. For any k weights coefficients a;,b; 1, as well as coefficients Ay, By have the
following properties:
k

—1 k—1
1) > aj =K 3 b=k
Jj=0 Jj=0

2)1=app >a1>...>0,1=byp >b1p>..>0,
3) Ay >0, B, > 0.

Proof. The first property follows from the definition of weight coefficients. The second
property is proved in the following way. We introduce two functions: ¢ () = (z + 1)* % —
2% and n(z) = (z+ 1) — 2% n(z) = (+1)"7 — 2", where £ > 0. These
functions are decreasing. Really derived from these functions:

¢ (1) =2 B) [(x+ 1) — =) <09/ (2) = (1 — ) [(a + 1) -] <0

Therefore, the second property holds. The third property follows also the properties of the
gamma function. The lemma is proved.

B B (I

Let th(t)x (n) and agt(t)a: (n) be the approximations of differential operators of

Gerasimov — Kaputo type (7) for 85;” (n) and be the 9;; 2 (1), Then we have the following
lemma.

Lemma 2. Approzimations 5gt(t)x (n) and égf% (n) operators of the Gerasimov — Caputo
type 86() (n) and 87() (n) satisfy the following estimates:

o0 (n) = B ()| < Cor |04 () — A0 ()| < Car, (10)
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where Cy and Cy — constants that are independent of the parameter T.

Proof. Using the first property of Lemma 1 and Definition 2, we obtain:

S8(¢) 2B iy , 2 e X _
80t .CIZ'(?”]) = F(3——ﬁk)j§0aj’k [l’(t —jT) + 0 (T )] = m;aﬂx(i —j7)+

[y

2Bk |.2—Br 72— B k ) . $2= Bk
+_F 3= 5y 0 (7—2) - T'(3— B Zaj,kx (t —j7) + I'(3— ﬁk)O (7—2) -

=0
= o Y aid(t—jT) + 0 (77).
r(3-8y) =

Similar estimates can be obtained for the operator 8&@ (n).

(I
Proposition 1. According to Lemma 2, it can be shown that the explicit finite-difference

scheme (9) has an error ¢ = O (7). This fact will be used in computer experiments in
determining the computational accuracy of the numerical method.

The finite-difference scheme (9) can be rewritten in matrix form
Xiy1 = M Xy, + Fy, (11)

Xpy1 = (21, Ty oo Tn—1) 5 Xip = (20, T1, oy Tn—2) "> Fr = (fo, f1, oo fy—2)

where the matrix M = (m;;),i=1,...N—-1,j=1,..,N — 1

0, j5=>i+1,
A1 (2—ai—25-1) — Bi—ibi_9,— . .
B 1 2i-1) il =i =3, ,N—1,
mij = Aioi+ By
—A; (az’—j+1,i—1 - 2ai—j,z’—1 + ai—j—l,i—l) — B (bi—j—l-l,i—l - bi—j—l,i—l) j<i—1
A1+ B T 7
24, Bi_1bi_9;_1 — Ai—lai—2z’—1 .
1 = m= : =l i=2,...,N—1,
et 2,2 A+ By’ L A1+ B '
Aiq (2@i—2 i—-1 — @j—3 i—l) + Bi_1bi—zi-1 .
02 = : : — 1 =3,....N — 1.
.2 A1+ By !

Theorem 1. An explicit finite-difference scheme (9) converges with the first order
|z, — x| = O (1) if the following condition is satisfied:

1

. 2l (2 — yi-1) Bi—1 — i .
<719= 1, [ =2 el ) Piel T Vil =2 .,N—-1 12
T — 7—0 min 9 ()\F (3 o /Bl',l) 77’ ? Y ( )

Proof. Let be X = (Zo, ..., Zn_2)" the exact solution of system (8) and the error vector
ers1 = Xpi1 — Xpr1,€0 = 0.. Then system (11), with allowance for Lemma 2, can be
written as follows:

ext1 = Mep + Fop + O (1), (13)
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1
where, Fop = o (If (@, ) = F @0, 1f (o te) = f (@ t)) <
. Ar + By )
—— (Lyer,...,Lyey) = AFyen, AF ——diag(Ly,...,Ly)". We note
Ak+Bk(11 kEk) kCk k A, 1 B, g(Ly k) n
that for any k the inequality holds |Lx| < L (2). Consider the norm for the matrix M:
k—1
|M||,, = max | > my; |. According to Lemma 1, we note that the inequality holds
7 ]:1

|M]||,, — 1. Note that for the values of the parameter A > 1 the norm ||[M|_ — 1,
however, the condition number > 1 and is violated and the diagonal transformation is
violated, therefore it is necessary to decrease the step 7.

Further from equation (13), for any constant C' > 0 independent of 7, and the error
rate, the following estimate holds:

L
< ||AF, + M Cr < |3+ ———= Cr. 14
lexsille < IAF:+ Ml llale + 07 < (34— ) lal+0n. ()

We introduce the notation in (14): s, = (3 +

m) , s = C'7. Then we obtain the

following estimate:
lersillo < sullenll +5 < se (se-1ller—1ll o +5) +5=

= seSk—1ler—1llo + 5 (56 + 1) < spsp—1 (su—2ller—2llo +5) +5(sp +1) =
= SkSk-_]_Sk;_QHQk_QHOO + s (SkSk_l + S + 1) <

15
< SkSk—15k—2 (Sk—3||ex—3loo +5) + 5 (spSp—1 + 5 + 1) = (15)
= 5pSk—15k—25k—3|€k—3|| o + S(SkSk—15k—2 + SpSp—1 + 5 + 1) <
S SkSk—1 """ Sk—r ||€k_7«|| +s (sksk_l st Sk—r41 + -+ Skt 1) .
Substituting into (15) r = k — 1, we obtain:
lertilla < SkSk—1 - s1llen]| + s (SpSk=1 oo - S24+ ..+ 5+ 1) < Colleo|| + O (7).
k
From the second initial condition (6) it follows: ||e1|| < [leo|| and Cp = [] s,.
p=1
Now according to our assumption A; | > B;_1, which leads us to the relation:
1
r< (U )Pt T il —9 N — 1. 16
(Crei (16)

The condition (16) begins to work at such values A, when a many of conditionality
arises © > 1, and for sufficiently small values A, it suffices that the step satisfy the
inequality 7 < 1. Therefore, we arrive at the relation (12). The theorem is proved.

a
Remark 3. We note that in [13]| the authors used the classical Lax theorem, which holds

for local finite-difference schemes, to prove the convergence of the scheme. For nonlocal
finite-difference schemes, the convergence must be proved independently.

We consider the stability of an explicit finite-difference scheme (4). Suppose that X,
and two Y, different solutions of the matrix equation (11) with initial conditions X, and
Yo.
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Theorem 2. An explicit finite-difference scheme (9) is conditionally stable if condition
(12) is satisfied and the estimate holds |Yy, — Xi| < C'|Yo — Xo| for any k, where > 0 it
does not depend on the step T.

Proof. We introduce the notation: €51 = Y11 — Xp41. Then equation (12) can be written
in the form: ey = Mey, + F¢ . Here, as it was said in

1 T — T
Fop=— ) — F (@t s ) — f (@ t))T <
i Ak+Bk(|f(x1 k) — f (@ te)] s | f (s te) = f (Zk, th)])
< 1 (Lie Lyey) = AFye
= A+ By, b R SR

According to Theorem 1, we have the following estimate:

L
M+AF)| < |3+ —— | = k.
M+ AR < (34555 ) ==

Therefore, the following estimate holds:

L
e < ||M + AFg|| |le <(3+——F5 )l =
lewsille < 107+ SR leal < (34 55 ) el

= spllerllo < Swsk—tller—1llo < Sksk—156—2|ler—2lloo < o < SkSk—1 " o Sp—r |[€1—r]| -

k
With r =k — 1, we obtain |lext1] . < olle1]] < Colleoll, Co = 11 sp-
p=1

The last inequality follows from the second condition of problem (6). Therefore, if
Xo there is a perturbation, then it does not lead to a large increase in the error of the
numerical solution. However, for large values A, a many of conditionality u > 1 arises,
and therefore it is necessary to decrease the step 7, according to (16), for small values A
the estimate is valid 7 < 1. Then the system is stable if condition (12) is satisfied. The
theorem is proved.

m
3. Results of Modelling

Consider the work of the explicit finite-difference scheme (9) on specific examples. We
show that the scheme (9) has the first order of accuracy. Since in the general case the exact
solution of the Cauchy problem (5), (6) can’t be written in the analytical form, we will use
the double conversion method. For this, we introduce two parameters: £ = max |z — xo4]

— absolute error between the numerical solution x; in step 7 and the numerical solution xs;
in step 7/2. Then the order of computational accuracy p can be estimated by formula: p =
log, (§)/log, (7/2). The numerical algorithm (9) was developed in a computer programme
in the language of symbolic mathematics Maple.

Remark 4. We note that in the case when the fractional parameters in the scheme (9) do
not change and have the following values of 5, = 2 and 7, = 1, we arrive at the classical
local explicit finite-difference scheme with the second order of accuracy.
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Example 1. Suppose that the right-hand side in equation (1) has the form:

f(x(t),t) =dsin(pt) + tz(t).

Then equation (5) describes a linear hereditary Airy oscillator, which was considered in
the author’s papers |7] and has the following form:

Ao (1) + A () — tar (1) = b cos (pt).

We choose the initial conditions (6) for simplicity by homogeneous: x (0) = @ (0) = 0
In this case, the explicit finite-difference scheme (9) has a more specific form (zy = x; = 0):

Tpi1 = m ((2Ax — k1) x, — (Ax — By) xp—1 + 0sin (pkT)) —

k—1
Ag

k—1 17
—iiE 21 ajp (Th—jr — 205+ T j1) — o Zl bjk (Th—j1 — Tp—j-1) - (17)
J= J=

For the explicit finite-difference scheme (17), we choose the following values of the
control parameters: T =1, A=1,0 =5, p = 10,w = 10, 8 (¢t) = 1,8—0,03 sin (wt) ,y (t) =
0,8 — 0,05 cos (wt) and during the simulation we will change the number of nodes N in
the calculation grid.

Remark 5. We note that for Example 1 the conditions of Theorem 1 and Theorem 2 are
satisfied, which is indirectly confirmed by the results of modelling for different values N
of the nodes of the computational grid (Table 1).

Table 1

Results of numerical simulation

N S p

640 | 0,0003331017 | 1,119146497
1280 | 0,0001745618 | 1,102636795
2560 | 0,0000906971 | 1,089811915

From Table 1 we can notice that when the number of calculated nodes in the grid
doubles in nodes /N, the maximum error in absolute value decreases twice, and the order
of computational accuracy p tends to unity.

This confirms that the explicit finite-difference scheme (9) and in particular the scheme
(17) for Example 1 has the first order of accuracy, and since condition (12) is satisfied,
then convergence with the same order.

In Fig. 1 the oscillogram (Fig. 1 a) and the phase trajectory (Fig. 1 b) are shown for
Example 1 at the parameter value T'= 10, N = 1000. It can be noted that with time the
amplitude of the oscillations is established and as a result the phase trajectory reaches the
limit cycle. Another situation arises in the case of free oscillations 6 = 0 (Fig. 2).

The amplitude of the oscillations decays (Fig. 2 a), and the phase trajectory twists into
a spiral (Fig. 2 b). The dissipation of energy in this case occurs as a result of the presence of
friction with a coefficient A, and also the "memory" effect, which gives an additional term
in the ratio for the total energy of the oscillatory system (Fig. 3). This fact is confirmed
by the results of [2]. Consider the following example of a nonlinear hereditary oscillator.
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Fig. 1. The oscillogram a) and the phase trajectory b) for Example 1 with the parameter
values T'= 10, N = 1000

Example 2. Let the right-hand side in equation (1) has the form:
f(x(t),t) =dsin(pt) — ax (t) + bx® (1),

and we choose the homogeneous initial conditions (6): x (0) = 4 (0) = 0. In this case,
Equation. (5) describes the Duffing fractional oscillator [5]:

Oz () + 200V x (1) + ba® (t) — ax (t) = §sin (pt) .
The explicit finite-difference scheme (9) for this case has the form (zg = z; = 0):

Tl = m ((2Ak + 1) T — ;L'k (Ak Bk) Th—1 + (SSiH ((ka)) —

A kila. (Tp—jp1 — 2Tp—j + Tp_j1) — By kilb, (Tp—jp1 — Th—j1) (18)
Ap+B;, = 3,k \Lk—j5+1 k—j k—j—1 A+ B = gk \(Lle—j+1 k—j—1)-

For the explicit finite-difference scheme (18), we take the values of the control
parameters as follows: T =1, A=0,3,0 =2, p =w = 1.

Remark 6. Note that this choice of control parameter values is ensured by the condition
(12) for Theorem 1 and Theorem 2.

The results of numerical simulation for Example 2 are given in Table 2.
Note from Table 2 that for Example 2, with an increase in the number of design nodes
N, the maximum error £ in absolute value decreases, and the order of computational
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Fig. 2. The oscillogram a) and the phase trajectory b) for Example 1 with initial conditions
2(0)=0,1,2(0) = 0,2 and § = 0 this is the left figure and right figure for A =0

Table 2

Results of numerical simulation

N S p

640 | 0,0003619281 | 1,107545912
1280 | 0,0001896841 | 1,092050182
2560 | 0,0000991471 | 1,079382204

accuracy p tends to unity. This indicates that the explicit finite-difference scheme (18) has
the first order of accuracy. Let’s perform numerical simulation according to the scheme
(18) with the values of the following parameters: 7' = 100, N = 2000, § = 50, and leave the
remaining parameters unchanged. Let us construct an oscillogram and a phase trajectory
(Fig. 3).

The oscillogram (Fig. 4 a) has a constant amplitude of a more complex shape at its
minima and maxima, which is reflected in the phase trajectory (Fig. 4 b). The phase
trajectory enters a complex two-loop limit cycle. The presence of such loops, apparently,
is associated with the effects of memory in the oscillatory system.

Fig. 4 shows the case of free oscillations for Example 2. It is seen that the presence of
friction and memory effects in the oscillatory system intensify energy dissipation, which
leads to damping of the oscillations (Fig. 4 a) and a phase trajectory a twisting spiral
(Fig. 4 b). Indeed, if there is no friction A = 0 in the oscillatory system, we obtain an
oscillogram and a phase trajectory.
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Fig. 3. The oscillogram a) and the phase trajectory b) for Example 2
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Fig. 4. Oscillogram a) and phase trajectory b) for Example 2 with initial conditions
z(0) =0,1,2(0) = 0,2 and 6 = 0 this is the left figure and right figure for A = 0
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Example 3. Suppose that in the equation (1) the right-hand side has the form:

f(x(t),t)=>bt+ CZ ay sin (nz (t)) — Oz (1), (19)

where b is spring travel speed, c is the surface adhesion energy, w is the frequency of free

cos (mnt) dt
oscillations, a,, = 2n fl cos (mn) dr

0 are coefficients of the expansion of the Fourier series.

cosh? (77)

Equation (5) with the right-hand side of (19) describes the hereditary stick-slip effect
[6]. The values of these coeflicients are taken from: a; = 0,436, ay = 0,344, a3 = 0,164, ay =
0,058, a5 = 0,021,a6 = 0,004,a; = 0,003. Values of control parameters: §(t) = 1,8 —
0,03sin (7t), v(t) = 0,6 — 0,04 cos (nt), N = 3000, 6 = 50, 7 = 0,05, A = 0,3, b = 1,
w=1,z(0)=0,2(0)=0,3.
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Fig. 5. Calculated curves obtained from formula (9): a) oscillogram, b) oscillator speed,
c) phase trajectory
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Fig. 5 shows the calculated displacement curves, displacement velocities and phase
trajectory. Fig. 5 a shows the oscillogram for Example 3. It can be seen that during
the separation, the load experiences oscillations, and the rate of such oscillations in the
potential well attenuates rather slowly Fig. 5 b. This effect is the eradication of the process.
The phase trajectory Fig. 5 ¢ shows that the potential wells are stable focuses.

Conclusion

A mathematical model characterizing a wide class of hereditary oscillators is proposed
and studied. The model is a differential Cauchy problem with derivatives of fractional order
variables of the Gerasimov — Kaputo type (5), (6). Using the theory of finite-difference
schemes, a non-local explicit finite-difference scheme (9) was constructed with the first
order of accuracy. Questions of its stability and convergence, which are formulated in the
form of corresponding theorems, were studied.

The main result of the paper can be formulated as follows: an explicit finite-difference
scheme is conditionally stable and converges if criterion (12) is satisfied. With the help of
computational examples it was shown that the scheme (9) has the first order of accuracy.
It is confirmed that in the case of free oscillations, the presence of friction and heredity
increases dissipation of energy, which leads to attenuation of oscillations.
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MATEMATNYECKA4A MOJAEJIb HINMPOKOI'O KJIACCA OCHUJIJIATOPOB
C TAMATBHIO

P.U. Ilaposux, Kamuarckuit rocymapcrBennsiii yuusepcurer umenu B. Bepumra,

r. Ilerponasiosck-Kamuarckuii, Poccuiickas ®enepanus; UucturyT KocMobu3ndecKux
nccnemoBanuiit m pacnpocrpanenus paanosoir JIBO PAH, c. [Taparyuka, Kamuarckuii kpait,
Poccmitckast @eneparnst

B pabore mpenyiozkena MaTeMaTUYIecKasi MOJIEh MJIsl OTIMCAHUS IITUPOKOTO KJIACCa Ipe-
JUTAPHBIX OCIIIIATOPOB MU OCIHIIATOPOB ¢ TaMAThI0. B KadecTBe 6a30BOr0 ypaBHEHUs B
TAKOIl MOIENN BBICTYIAET UHTErpo-auddepeHnuaabH0oe YPABHEHUST BOJIBTEPOBCKOTO TUTIA, €
PA3HOCTHBIMH SAIpaMu — PYHKIIUAMHI ITAMATH, KOTOPBIE OBLIN BHIOPAHBI CTEIIEHHBIME (PYHK-
nusMu. DTOT BBIOOP, C OHOM CTOPOHBI, O0YCIOBJIEH MUPOKUMHU TPUJIOKEHUSIMU CTEMEHHBIX
3aKOHOB M (PPAKTAJBHBIMU CBOMCTBAMU MPOIIECCOB B MPUPOJIE, & C JAPYroii, JaeT BO3MOXK-
HOCTBb TPUMEHWTb MATEeMATHIeCKuil annapar apobHoro ucuucienus. Jlasee, B pabore mo-
JesibHOe nHTerpo-auddepeninaibHoe ypaBHeHne ObLI0 3aUCAHO B TEPMUHAX IPOU3BOIHBIX
npobubix mopaakoB Iepacumora — KanyTo. Vcmonb3yst anmpoKCHMaIuu OrepaTopoB apob-
HBIX TIOPSIIKOB, OBIJIa COCTABIEHA HETOKAIBHAS SIBHAST KOHEYHO-PA3HOCTHAST CXEMA, KOTOPAsT
JIaeT YUCJIEHHOE peIlieHne mpeaiokennoit momaenan. C moMoIeio JeMM 1 TeopeM chopmysiu-
POBAHBI YCIOBUST YCTOWYMBOCTH U CXOAMMOCTH TIOJYUEHHOU cxembl. [IpuBeneHsr mpuMeps
paboThl YUCTEHHOTO AJTOPUTMA JJIs HEKOTOPBIX 3PEIUTAPHBIX OCIUIISTOPOB, TOCTPOEHBI
¥X OCITUJIJIOTPAMMBI U (ha30BbIE TPAEKTOPUH.

Karouesnie caosa: mamemamuseckas modeasv; zadavwa Kowu; spedumaprnocms; npo-
U36001GA 0PO6HO20 NOPAJKA; KOHEUWHO-DASHOCTIHAA CLEMA; YCMOTUYUBOCTMb; CLOOUMOCTI;
0CUUNAAOZPAMMBL; PA306BLE MPAEKMOPUL.
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