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A mathematical model is proposed for describing a wide class of radiating or memory

oscillators. As a basic equation in this model is an integro-di�erential equation of Voltaire

type with di�erence kernels � memory functions, which were chosen by power functions. This

choice is due, on the one hand, to broad applications of power law and fractal properties of

processes in nature, and on the other hand it makes it possible to apply the mathematical

apparatus of fractional calculus. Next, the model integro-di�erential equation was written

in terms of derivatives of fractional Gerasimov � Caputo orders. Using approximations of

operators of fractional orders, a non-local explicit �nite-di�erence scheme was compiled that

gives a numerical solution to the proposed model. With the help of lemmas and theorems,

the conditions for stability and convergence of the resulting scheme are formulated.

Examples of the work of a numerical algorithm for some hereditary oscillators such as

Du�ng, Airy and others are given, their oscillograms and phase trajectories are constructed.
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Introduction

In the paper of the Italian mathematician Vito Volterra [1], the notion of heredity
(memory), a property of a dynamical system characterized by non locality in time, is
introduced, which consists in the dependence of its current state on a �nite number of
previous states. V. Volterra investigated the hereditary oscillator � a vibration system
with memory, which was written in the form of an integro-di�erential equation with a
di�erence kernel, a function of memory. Further, for such an oscillator, Volterra derived the
law of total energy, in which an additional term appeared, responsible for the dissipation
of energy in the vibrational system. This fact was con�rmed in subsequent works.

In papers [2�9] fractal oscillators were considered, which represent the class of
hereditary oscillators with a power-law function of memory. The peculiarity of such
oscillators is that their mathematical description can be reduced to di�erential equations
with non-local derivatives of fractional constant orders, which are investigated within the
framework of the theory of fractional calculus [10].

In papers [2, 4�7, 9] models of fractal linear oscillators were investigated in the sense
of the Gerasimov � Caputo derivative, and in papers [3,8] � in the sense of the Riemann �
Liouville derivative. Analytical solutions of model equations in terms of a special function
of Mittag � Le�er type and generalized Wright-type function, oscillograms and phase
trajectories are constructed. It is shown that in the regime of free oscillations, the presence
of memory e�ects in the system leads to attenuation of oscillations as a result of energy
dissipation, and with allowance for external periodic action, it is possible to stabilize the
amplitude of the oscillations, with the phase trajectories reaching the limit cycle and also
the resonance e�ect.
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In a monograph by the Slovak mathematician I. Petras [3], the fractal nonlinear
oscillator models whose di�erential equations contained fractional derivatives in the sense
of Riemann � Liouville were considered and analyzed using numerical methods and
considered the stability of the rest point of oscillatory systems. However, the stability
and convergence of numerical methods have not been considered.

A further continuation of the investigation of hereditarity oscillators is associated with
the introduction of the derivatives of fractional variable orders in the model equations. This
is due to the fact that the orders of fractional derivatives are related to the properties of the
medium in which this or that process takes place and changes with time under the in�uence
of external in�uence. Therefore, papers [5�9] proposed the models of fractal nonlinear
oscillators were proposed and investigated using explicit �nite-di�erence schemes, whose
equations contain both the derivatives of the constants, and variable fractional orders
of the Gerasimov � Caputo and Riemann � Liouville types. With the help of computer
experiments, the convergence of �nite-di�erence schemes was shown and estimates of the
computational accuracy of the method were obtained, oscillograms and phase trajectories
were constructed. However, the questions of stability and convergence were not formulated
in the form of corresponding theorems.

From the analysis of the above publications on the study of hereditary oscillator, we
can conclude that the main tool for their study is numerical methods, for example, �nite-
di�erence schemes. In most cases, the authors leave without attention the questions of
stability and convergence of �nite-di�erence schemes, and even if they touch, then without
formulating the corresponding theorems and proofs. Therefore, the goal of the present
paper is to construct a �nite-di�erence scheme for a wide class of hereditary (fractal) linear
and nonlinear oscillators, and to prove its stability and convergence, formulate results in
the form of corresponding theorems, and study �nite-di�erence schemes on speci�c test
examples.

1. Formulation of the Problem

Consider the following model integro-di�erential equation for the function x (t) ∈
C3 (0, T ), where T > 0:

t∫
0

K1 (t− η)ẍ (η) dη + λ

t∫
0

K2 (t− η)ẋ (η) dη = f (x (t) , t) , (1)

where ẍ (t) = d2x/dt2, ẋ (t) = dx/dt, λ > 0 � given constant, functions K1 (t− η) and
K2 (t− η) � di�erence kernels in equation (1) will be called memory functions, since they
de�ne the notion of heredity (memory) [1].

Equation (1) describes a wide class of hereditary, depending on the form of the right-
hand side (function f (x (t) , t)) of linear or non-linear oscillators.

De�nition 1. A nonlinear function f (x (t) , t) on the right-hand side of equation (1)
satis�es a Lipschitz condition with respect to a variable x (t):

|f (x1 (t) , t)− f (x2 (t) , t)| ≤ L |x1 (t)− x2 (t)| , (2)

L � Lipschitz constant.
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Equation (1) describes a broad class of hereditary nonlinear oscillators, depending on
the form of the function f (x (t) , t) on its right-hand side and the parameter λ have the
meaning of the coe�cient of friction.

Remark 1. Note that the memory functions K1 (t− η) and K2 (t− η) can be chosen
arbitrarily, depending on the conditions of the particular problem. We will choose these
functions power-law, since power laws are often found in various �elds of knowledge [11].

We choose the memory functions K1 (t− η) and K2 (t− η) in the form:

K1 (t− η) =
(t− η)1−β(t)

Γ (2− β (t))
, K2 (t− η) =

(t− η)−γ(t)

Γ (2− γ (t))
, (3)

where γ (t) , β (t) ∈ C [0, T ], Γ (t) � Euler-gamma function.
Taking into account relation (3) we obtain the following de�nition.

De�nition 2. Derivatives of fractional variables of orders β (t) and γ (t) Gerasimov �
Caputo type we call the following operators of fractional di�erentiation:

∂
β(t)
0t x (η) =

1

Γ (2− β (t))

t∫
0

ẍ (η) dη

(t− η)β(t)−1
, ∂

γ(t)
0t x (η) =

1

Γ (1− γ (t))

t∫
0

ẋ (η) dη

(t− η)γ(t)
. (4)

Remark 2. We note that in the case when the functions β (t) and γ (t) in the relations
(4) are constants, we arrive at the de�nitions of the fractional derivative in the sense of
Gerasimov � Caputo [12] and in the case when these constants β = 2 and γ = 1 the
operators of fractional di�erentiation (4) become classical derivatives of the second and
�rst orders.

Taking into account De�nition 2 the model equation (1) can be rewritten in a more
compact form:

∂
β(t)
0t x (η) + λ∂

γ(t)
0t x (η) = f (x (t) , t) . (5)

For equation (5), the initial conditions in the local formulation are valid:

x (0) = α0, ẋ (0) = α1, (6)

where α0 and α1 � given constants. As a result, we arrive at the Cauchy problem (5) and
(6), which we will investigate.

2. Explicit Finite-Di�erence Scheme

We construct an explicit �nite-di�erence scheme for the Cauchy problem (5), (6). We
divide the time interval [0, T ] into N equal parts with a step τ = T/N . We introduce the
grid function x (tk) = xk, where tk = kτ, k = 1, . . . , N − 1. The derivatives of the variables
of fractional orders in equation (5) are approximated according to the relations in [12]:

∂
β(t)
0t x (η) ≈ Ak

k−1∑
j=0

aj,k (xk−j+1 − 2xk−j + xk−j−1) , (7)
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∂
γ(t)
0t x (η) ≈ Bk

k−1∑
j=0

bj,k (xk−j+1 − xk−j−1) ,

where the weight coe�cients have the form: aj,k = (j + 1)2−βk − j2−βk , bj,k = (j + 1)1−γk −

j1−γk , Ak =
τ−βk

Γ (3− βk)
, Bk =

λτ−γk

2Γ (2− γk)
. Here to shorten the record: β (tk) = βk,

γ (tk) = γk.
Taking into account relations (7), the Cauchy problem (5), (6) in the di�erence

formulation will have the form:

Ak

k−1∑
j=0

aj,k (xk−j+1 − 2xk−j + xk−j−1) +Bk

k−1∑
j=0

bj,k (xk−j+1 − xk−j−1) = fk, (8)

where x0 = α0, x1 = α1 + τα0. Here to shorten the record fk = f (xk, tk). We write the
problem (8) explicitly:

xk+1 =
1

Ak+Bk
(2Akxk − (Ak −Bk) xk−1)−

− Ak

Ak+Bk

k−1∑
j=1

aj,k (xk−j+1 − 2xk−j + xk−j−1)− Bk

Ak+Bk

k−1∑
j=1

bj,k (xk−j+1 − xk−j−1) + fk.
(9)

We note that the weight coe�cients aj,k and bj,k have properties, which we formulate
in the form of the following lemmas.

Lemma 1. For any k weights coe�cients aj,k,bj,k, as well as coe�cients Ak,Bk have the
following properties:

1)
k−1∑
j=0

aj,k = k2−βk ,
k−1∑
j=0

bj,k = k1−γk ,

2) 1 = a0,k > a1,k > ... > 0, 1 = b0,k > b1,k > ... > 0,
3) Ak ≥ 0, Bk ≥ 0.

Proof. The �rst property follows from the de�nition of weight coe�cients. The second
property is proved in the following way. We introduce two functions: φ (x) = (x+ 1)2−βk −
x2−βk and η (x) = (x+ 1)1−γk − x1−γk η (x) = (x+ 1)1−γ − x1−γ, where x > 0. These
functions are decreasing. Really derived from these functions:

φ′ (x) = (2− βk)
[
(x+ 1)1−βk − x1−βk

]
< 0, η′ (x) = (1− γk)

[
(x+ 1)1−γk − x1−γk

]
< 0.

Therefore, the second property holds. The third property follows also the properties of the
gamma function. The lemma is proved.

2
Let ∂̄

β(t)
0t x (η) and ∂̄

γ(t)
0t x (η) be the approximations of di�erential operators of

Gerasimov � Kaputo type (7) for ∂
β(t)
0t x (η) and be the ∂

γ(t)
0t x (η), Then we have the following

lemma.

Lemma 2. Approximations ∂̄
β(t)
0t x (η) and ∂̄

γ(t)
0t x (η) operators of the Gerasimov � Caputo

type ∂
β(t)
0t x (η) and ∂

γ(t)
0t x (η) satisfy the following estimates:∣∣∣∂β(t)

0t x (η)− ∂̄
β(t)
0t x (η)

∣∣∣ ≤ C1τ,
∣∣∣∂γ(t)

0t x (η)− ∂̄
γ(t)
0t x (η)

∣∣∣ ≤ C2τ, (10)
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where C1 and C2 � constants that are independent of the parameter τ .

Proof. Using the �rst property of Lemma 1 and De�nition 2, we obtain:

∂̄
β(t)
0t x (η) =

τ 2−βk

Γ (3− βk)

k−1∑
j=0

aj,k
[
ẍ (t− jτ) +O

(
τ 2
)]

=
τ 2−βk

Γ (3− βk)

k−1∑
j=0

aj,kẍ (t− jτ)+

+
τ 2−βkk2−βk

Γ (3− βk)
O
(
τ 2
)
=

τ 2−βk

Γ (3− βk)

k−1∑
j=0

aj,kẍ (t− jτ) +
t2−βk

Γ (3− βk)
O
(
τ 2
)
=

=
τ 2−βk

Γ (3− βk)

k−1∑
j=0

aj,kẍ (t− jτ) +O
(
τ 2
)
.

Similar estimates can be obtained for the operator ∂
γ(t)
0t x (η).

2
Proposition 1. According to Lemma 2, it can be shown that the explicit �nite-di�erence
scheme (9) has an error ε = O (τ). This fact will be used in computer experiments in
determining the computational accuracy of the numerical method.

The �nite-di�erence scheme (9) can be rewritten in matrix form

Xk+1 = MXk + Fk, (11)

Xk+1 = (x1, x2, ..., xN−1)
T , Xk = (x0, x1, ..., xN−2)

T , Fk = (f0, f1, ..., fN−2)
T ,

where the matrix M = (mij), i = 1, ..., N − 1, j = 1, ..., N − 1:

mij =


0, j ≥ i+ 1,

Ai−1 (2− ai−2,i−1)−Bi−1bi−2,i−1

Ai−1 +Bi−1

, j = i = 3, ..., N − 1,

−Ai−1 (ai−j+1,i−1 − 2ai−j,i−1 + ai−j−1,i−1)−Bi−1 (bi−j+1,i−1 − bi−j−1,i−1)

Ai−1 +Bi−1

, j ≤ i− 1,

m1,1 = 1,m2,2 =
2A1

A1 +B1

,mi,1 =
Bi−1bi−2,i−1 − Ai−1ai−2,i−1

Ai−1 +Bi−1

, i = 2, ..., N − 1,

mi,2 =
Ai−1 (2ai−2,i−1 − ai−3,i−1) +Bi−1bi−3,i−1

Ai−1 +Bi−1

, i = 3, ..., N − 1.

Theorem 1. An explicit �nite-di�erence scheme (9) converges with the �rst order
|x̄k − xk| = O (τ) if the following condition is satis�ed:

τ ≤ τ0 = min

1,

(
2Γ (2− γi−1)

λΓ (3− βi−1)

) 1

βi−1 − γi−1

 , i = 2, ..., N − 1. (12)

Proof. Let be X̄k = (x̄0, ..., x̄N−2)
T the exact solution of system (8) and the error vector

ek+1 = X̄k+1 − Xk+1, e0 = 0.. Then system (11), with allowance for Lemma 2, can be
written as follows:

ek+1 = Mek + Fe,k +O (τ) , (13)
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where, Fe,k =
1

Ak +Bk

(|f (x1, tk)− f (x̄1, tk)| , . . . , |f (xk, tk)− f (x̄k, tk)|)T ≤
1

Ak +Bk

(L1e1, . . . , Lkek) = ∆Fkek, ∆Fk =
1

Ak +Bk

diag(L1, . . . , Lk)
T . We note

that for any k the inequality holds |Lk| ≤ L (2). Consider the norm for the matrix M :

∥M∥∞ = max
i

(
k−1∑
j=1

mij

)
. According to Lemma 1, we note that the inequality holds

∥M∥∞ → 1. Note that for the values of the parameter λ ≫ 1 the norm ∥M∥∞ → 1,
however, the condition number µ ≫ 1 and is violated and the diagonal transformation is
violated, therefore it is necessary to decrease the step τ .

Further from equation (13), for any constant C > 0 independent of τ , and the error
rate, the following estimate holds:

∥ek+1∥∞ ≤ ∥∆Fk +M∥∞∥ek∥∞ + Cτ ≤
(
3 +

L

Ak +Bk

)
∥ek∥∞ + Cτ. (14)

We introduce the notation in (14): sk =

(
3 +

L

Ak +Bk

)
, s = Cτ . Then we obtain the

following estimate:

∥ek+1∥∞ ≤ sk∥ek∥∞ + s ≤ sk (sk−1∥ek−1∥∞ + s) + s =
= sksk−1∥ek−1∥∞ + s (sk + 1) ≤ sksk−1 (sk−2∥ek−2∥∞ + s) + s (sk + 1) =

= sksk−1sk−2∥ek−2∥∞ + s (sksk−1 + sk + 1) ≤
≤ sksk−1sk−2 (sk−3∥ek−3∥∞ + s) + s (sksk−1 + sk + 1) =

= sksk−1sk−2sk−3∥ek−3∥∞ + s(sksk−1sk−2 + sksk−1 + sk + 1) ≤
≤ sksk−1 · · · · · sk−r ∥ek−r∥+ s (sksk−1 · · · · · sk−r+1 + · · ·+ sk + 1) .

(15)

Substituting into (15) r = k − 1, we obtain:

∥ek+1∥∞ ≤ sksk−1 · ... · s1 ∥e1∥+ s (sksk−1 · ... · s2 + ...+ sk + 1) ≤ C0 ∥e0∥+O (τ) .

From the second initial condition (6) it follows: ∥e1∥ ≤ ∥e0∥ and C0 =
k∏

p=1

sp.

Now according to our assumption Ai−1 ≥ Bi−1, which leads us to the relation:

τ ≤
(
2Γ (2− γi−1)

λΓ (3− βi−1)

) 1

βi−1 − γi−1 , i = 2, . . . , N − 1. (16)

The condition (16) begins to work at such values λ, when a many of conditionality
arises µ ≫ 1, and for su�ciently small values λ, it su�ces that the step satisfy the
inequality τ ≤ 1. Therefore, we arrive at the relation (12). The theorem is proved.

2
Remark 3. We note that in [13] the authors used the classical Lax theorem, which holds
for local �nite-di�erence schemes, to prove the convergence of the scheme. For nonlocal
�nite-di�erence schemes, the convergence must be proved independently.

We consider the stability of an explicit �nite-di�erence scheme (4). Suppose that Xk

and two Yk di�erent solutions of the matrix equation (11) with initial conditions X0 and
Y0.
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Theorem 2. An explicit �nite-di�erence scheme (9) is conditionally stable if condition
(12) is satis�ed and the estimate holds |Yk −Xk| ≤ C |Y0 −X0| for any k, where > 0 it
does not depend on the step τ .

Proof. We introduce the notation: ek+1 = Yk+1−Xk+1. Then equation (12) can be written
in the form: ek+1 = Mek + Fe,k. Here, as it was said in

Fe,k =
1

Ak +Bk

(|f (x1, tk)− f (x̄1, tk)| , ..., |f (xk, tk)− f (x̄k, tk)|)T ≤

≤ 1

Ak +Bk

(L1e1, ..., Lkek) = ∆Fkek.

According to Theorem 1, we have the following estimate:

∥M +∆Fk∥ ≤
(
3 +

L

Ak +Bk

)
= sk.

Therefore, the following estimate holds:

∥ek+1∥∞ ≤ ∥M +∆Fk∥ ∥ek∥∞ ≤
(
3 +

L

Ak +Bk

)
∥ek∥∞ =

= sk∥ek∥∞ ≤ sksk−1∥ek−1∥∞ ≤ sksk−1sk−2∥ek−2∥∞ ≤ ... ≤ sksk−1 · ... · sk−r ∥ek−r∥ .

With r = k − 1, we obtain ∥ek+1∥∞ ≤ 0 ∥e1∥ ≤ C0 ∥e0∥, C0 =
k∏

p=1

sp.

The last inequality follows from the second condition of problem (6). Therefore, if
X0 there is a perturbation, then it does not lead to a large increase in the error of the
numerical solution. However, for large values λ, a many of conditionality µ ≫ 1 arises,
and therefore it is necessary to decrease the step τ , according to (16), for small values λ
the estimate is valid τ ≤ 1. Then the system is stable if condition (12) is satis�ed. The
theorem is proved.

2

3. Results of Modelling

Consider the work of the explicit �nite-di�erence scheme (9) on speci�c examples. We
show that the scheme (9) has the �rst order of accuracy. Since in the general case the exact
solution of the Cauchy problem (5), (6) can't be written in the analytical form, we will use
the double conversion method. For this, we introduce two parameters: ξ = max

i
|xi − x2i|

� absolute error between the numerical solution xi in step τ and the numerical solution x2i

in step τ/2. Then the order of computational accuracy p can be estimated by formula: p =
log2 (ξ)/log2 (τ/2). The numerical algorithm (9) was developed in a computer programme
in the language of symbolic mathematics Maple.

Remark 4. We note that in the case when the fractional parameters in the scheme (9) do
not change and have the following values of βk = 2 and γk = 1, we arrive at the classical
local explicit �nite-di�erence scheme with the second order of accuracy.
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Example 1. Suppose that the right-hand side in equation (1) has the form:

f (x (t) , t) = δ sin (φt) + tx (t) .

Then equation (5) describes a linear hereditary Airy oscillator, which was considered in
the author's papers [7] and has the following form:

∂
β(t)
0t x (η) + λ∂

γ(t)
0t x (η)− tx (t) = δ cos (φt) .

We choose the initial conditions (6) for simplicity by homogeneous: x (0) = ẋ (0) = 0
In this case, the explicit �nite-di�erence scheme (9) has a more speci�c form (x0 = x1 = 0):

xk+1 =
1

Ak+Bk
((2Ak − kτ) xk − (Ak −Bk) xk−1 + δ sin (φkτ))−

− Ak

Ak+Bk

k−1∑
j=1

aj,k (xk−j+1 − 2xk−j + xk−j−1)− Bk

Ak+Bk

k−1∑
j=1

bj,k (xk−j+1 − xk−j−1) .
(17)

For the explicit �nite-di�erence scheme (17), we choose the following values of the
control parameters: T = 1, λ = 1, δ = 5, φ = 10, ω = 10, β (t) = 1, 8−0, 03 sin (ωt) , γ (t) =
0, 8 − 0, 05 cos (ωt) and during the simulation we will change the number of nodes N in
the calculation grid.

Remark 5. We note that for Example 1 the conditions of Theorem 1 and Theorem 2 are
satis�ed, which is indirectly con�rmed by the results of modelling for di�erent values N
of the nodes of the computational grid (Table 1).

Table 1

Results of numerical simulation

N ξ p
640 0,0003331017 1,119146497
1280 0,0001745618 1,102636795
2560 0,0000906971 1,089811915

From Table 1 we can notice that when the number of calculated nodes in the grid
doubles in nodes N , the maximum error in absolute value decreases twice, and the order
of computational accuracy p tends to unity.

This con�rms that the explicit �nite-di�erence scheme (9) and in particular the scheme
(17) for Example 1 has the �rst order of accuracy, and since condition (12) is satis�ed,
then convergence with the same order.

In Fig. 1 the oscillogram (Fig. 1 a) and the phase trajectory (Fig. 1 b) are shown for
Example 1 at the parameter value T = 10, N = 1000. It can be noted that with time the
amplitude of the oscillations is established and as a result the phase trajectory reaches the
limit cycle. Another situation arises in the case of free oscillations δ = 0 (Fig. 2).

The amplitude of the oscillations decays (Fig. 2 a), and the phase trajectory twists into
a spiral (Fig. 2 b). The dissipation of energy in this case occurs as a result of the presence of
friction with a coe�cient λ, and also the "memory" e�ect, which gives an additional term
in the ratio for the total energy of the oscillatory system (Fig. 3). This fact is con�rmed
by the results of [2]. Consider the following example of a nonlinear hereditary oscillator.
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a)

b)

Fig. 1. The oscillogram a) and the phase trajectory b) for Example 1 with the parameter
values T = 10, N = 1000

Example 2. Let the right-hand side in equation (1) has the form:

f (x (t) , t) = δ sin (φt)− ax (t) + bx3 (t) ,

and we choose the homogeneous initial conditions (6): x (0) = ẋ (0) = 0. In this case,
Equation. (5) describes the Du�ng fractional oscillator [5]:

∂
β(t)
0t x (η) + λ∂

γ(t)
0t x (η) + bx3 (t)− ax (t) = δ sin (φt) .

The explicit �nite-di�erence scheme (9) for this case has the form (x0 = x1 = 0):

xk+1 =
1

Ak+Bk
((2Ak + 1)xk − x3

k − (Ak −Bk)xk−1 + δ sin (φkτ))−

− Ak

Ak+Bk

k−1∑
j=1

aj,k (xk−j+1 − 2xk−j + xk−j−1)− Bk

Ak+Bk

k−1∑
j=1

bj,k (xk−j+1 − xk−j−1).
(18)

For the explicit �nite-di�erence scheme (18), we take the values of the control
parameters as follows: T = 1, λ = 0, 3, δ = 2, φ = ω = 1.

Remark 6. Note that this choice of control parameter values is ensured by the condition
(12) for Theorem 1 and Theorem 2.

The results of numerical simulation for Example 2 are given in Table 2.
Note from Table 2 that for Example 2, with an increase in the number of design nodes

N , the maximum error ξ in absolute value decreases, and the order of computational
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a)

b)

Fig. 2. The oscillogram a) and the phase trajectory b) for Example 1 with initial conditions
x (0) = 0, 1, ẋ (0) = 0, 2 and δ = 0 this is the left �gure and right �gure for λ = 0

Table 2

Results of numerical simulation

N ξ p
640 0,0003619281 1,107545912
1280 0,0001896841 1,092050182
2560 0,0000991471 1,079382204

accuracy p tends to unity. This indicates that the explicit �nite-di�erence scheme (18) has
the �rst order of accuracy. Let's perform numerical simulation according to the scheme
(18) with the values of the following parameters: T = 100, N = 2000, δ = 50, and leave the
remaining parameters unchanged. Let us construct an oscillogram and a phase trajectory
(Fig. 3).

The oscillogram (Fig. 4 a) has a constant amplitude of a more complex shape at its
minima and maxima, which is re�ected in the phase trajectory (Fig. 4 b). The phase
trajectory enters a complex two-loop limit cycle. The presence of such loops, apparently,
is associated with the e�ects of memory in the oscillatory system.

Fig. 4 shows the case of free oscillations for Example 2. It is seen that the presence of
friction and memory e�ects in the oscillatory system intensify energy dissipation, which
leads to damping of the oscillations (Fig. 4 a) and a phase trajectory a twisting spiral
(Fig. 4 b). Indeed, if there is no friction λ = 0 in the oscillatory system, we obtain an
oscillogram and a phase trajectory.
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a)

b)

Fig. 3. The oscillogram a) and the phase trajectory b) for Example 2

a)

b)

Fig. 4. Oscillogram a) and phase trajectory b) for Example 2 with initial conditions
x (0) = 0, 1, ẋ (0) = 0, 2 and δ = 0 this is the left �gure and right �gure for λ = 0
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Example 3. Suppose that in the equation (1) the right-hand side has the form:

f (x (t) , t) = bt+ c
7∑

n=1

an sin (nx (t))− ωβ(t)x (t) , (19)

where b is spring travel speed, c is the surface adhesion energy, ω is the frequency of free

oscillations, an = 2n
∫ 1

0

cos (πnτ) dτ

cosh2 (πτ)
are coe�cients of the expansion of the Fourier series.

Equation (5) with the right-hand side of (19) describes the hereditary stick-slip e�ect
[6]. The values of these coe�cients are taken from: a1 = 0, 436, a2 = 0, 344, a3 = 0, 164, a4 =
0, 058, a5 = 0, 021, a6 = 0, 004, a7 = 0, 003. Values of control parameters: β (t) = 1, 8 −
0, 03 sin (πt), γ (t) = 0, 6 − 0, 04 cos (πt), N = 3000, δ = 50, τ = 0, 05, λ = 0, 3, b = 1,
ω = 1, x (0) = 0, ẋ (0) = 0, 3.

a)

b)

ñ)

Fig. 5. Calculated curves obtained from formula (9): a) oscillogram, b) oscillator speed,
c) phase trajectory
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Fig. 5 shows the calculated displacement curves, displacement velocities and phase
trajectory. Fig. 5 a shows the oscillogram for Example 3. It can be seen that during
the separation, the load experiences oscillations, and the rate of such oscillations in the
potential well attenuates rather slowly Fig. 5 b. This e�ect is the eradication of the process.
The phase trajectory Fig. 5 c shows that the potential wells are stable focuses.

Conclusion

A mathematical model characterizing a wide class of hereditary oscillators is proposed
and studied. The model is a di�erential Cauchy problem with derivatives of fractional order
variables of the Gerasimov � Kaputo type (5), (6). Using the theory of �nite-di�erence
schemes, a non-local explicit �nite-di�erence scheme (9) was constructed with the �rst
order of accuracy. Questions of its stability and convergence, which are formulated in the
form of corresponding theorems, were studied.

The main result of the paper can be formulated as follows: an explicit �nite-di�erence
scheme is conditionally stable and converges if criterion (12) is satis�ed. With the help of
computational examples it was shown that the scheme (9) has the �rst order of accuracy.
It is con�rmed that in the case of free oscillations, the presence of friction and heredity
increases dissipation of energy, which leads to attenuation of oscillations.
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ÌÀÒÅÌÀÒÈ×ÅÑÊÀß ÌÎÄÅËÜ ØÈÐÎÊÎÃÎ ÊËÀÑÑÀ ÎÑÖÈËËßÒÎÐÎÂ
Ñ ÏÀÌßÒÜÞ

Ð.È. Ïàðîâèê, Êàì÷àòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èìåíè Â. Áåðèíãà,
ã. Ïåòðîïàâëîâñê-Êàì÷àòñêèé, Ðîññèéñêàÿ Ôåäåðàöèÿ; Èíñòèòóò êîñìîôèçè÷åñêèõ
èññëåäîâàíèé è ðàñïðîñòðàíåíèÿ ðàäèîâîëí ÄÂÎ ÐÀÍ, ñ. Ïàðàòóíêà, Êàì÷àòñêèé êðàé,
Ðîññèéñêàÿ Ôåäåðàöèÿ

Â ðàáîòå ïðåäëîæåíà ìàòåìàòè÷åñêàÿ ìîäåëü äëÿ îïèñàíèÿ øèðîêîãî êëàññà ýðå-

äèòàðíûõ îñöèëëÿòîðîâ èëè îñöèëëÿòîðîâ ñ ïàìÿòüþ. Â êà÷åñòâå áàçîâîãî óðàâíåíèÿ â

òàêîé ìîäåëè âûñòóïàåò èíòåãðî-äèôôåðåíöèàëüíîå óðàâíåíèÿ âîëüòåðîâñêîãî òèïà ñ

ðàçíîñòíûìè ÿäðàìè � ôóíêöèÿìè ïàìÿòè, êîòîðûå áûëè âûáðàíû ñòåïåííûìè ôóíê-

öèÿìè. Ýòîò âûáîð, ñ îäíîé ñòîðîíû, îáóñëîâëåí øèðîêèìè ïðèëîæåíèÿìè ñòåïåííûõ

çàêîíîâ è ôðàêòàëüíûìè ñâîéñòâàìè ïðîöåññîâ â ïðèðîäå, à ñ äðóãîé, äàåò âîçìîæ-

íîñòü ïðèìåíèòü ìàòåìàòè÷åñêèé àïïàðàò äðîáíîãî èñ÷èñëåíèÿ. Äàëåå, â ðàáîòå ìî-

äåëüíîå èíòåãðî-äèôôåðåíöèàëüíîå óðàâíåíèå áûëî çàïèñàíî â òåðìèíàõ ïðîèçâîäíûõ

äðîáíûõ ïîðÿäêîâ Ãåðàñèìîâà � Êàïóòî. Èñïîëüçóÿ àïïðîêñèìàöèè îïåðàòîðîâ äðîá-

íûõ ïîðÿäêîâ, áûëà ñîñòàâëåíà íåëîêàëüíàÿ ÿâíàÿ êîíå÷íî-ðàçíîñòíàÿ ñõåìà, êîòîðàÿ

äàåò ÷èñëåííîå ðåøåíèå ïðåäëîæåííîé ìîäåëè. Ñ ïîìîùüþ ëåìì è òåîðåì ñôîðìóëè-

ðîâàíû óñëîâèÿ óñòîé÷èâîñòè è ñõîäèìîñòè ïîëó÷åííîé ñõåìû. Ïðèâåäåíû ïðèìåðû

ðàáîòû ÷èñëåííîãî àëãîðèòìà äëÿ íåêîòîðûõ ýðåäèòàðíûõ îñöèëëÿòîðîâ, ïîñòðîåíû

èõ îñöèëëîãðàììû è ôàçîâûå òðàåêòîðèè.

Êëþ÷åâûå ñëîâà: ìàòåìàòè÷åñêàÿ ìîäåëü; çàäà÷à Êîøè; ýðåäèòàðíîñòü; ïðî-

èçâîäíàÿ äðîáíîãî ïîðÿäêà; êîíå÷íî-ðàçíîñòíàÿ ñõåìà; óñòîé÷èâîñòü; ñõîäèìîñòü;

îñöèëëîãðàììû; ôàçîâûå òðàåêòîðèè.
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