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IN A QUEUE WITH SINGLE SERVER

A. Bobrowski, Lublin University of Technology, Lublin, Poland, a.bobrowski@pollub.pl
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Introduction

Background

As shown by an increasing body of examples, an intelligent enrichment of an underlying
state space may change the nature of a problem under consideration and allow for its
elegant solution. For instance, even the simplest scalar delay-differential equation

Z'(t) = ax(t) + bx(t — 1), t>0, (1)

where a,b € R and 7 > 0 are given, does not lead to a well-posed problem if we think of
x(t) € R as a state of a process at time ¢ and desire to describe dynamics in R. One should
rather think of the evolution of “history segments of 2”7, i.e., say continuous, functions

g [—7,0] = R, t>0,

defined by u(s) = z(s +t),s € [-7,0] so that u,; contains the entire information on z in
the time interval [t — 7,¢]. Then, (1) may be rewritten as a differential equation in the
space C[—7,0] of continuous functions on [—7,0] and the related initial value (Cauchy)
problem is well-posed. As it transpires, this rather simple idea leads to a quite satisfying
theory and has far-reaching consequences (see [1, Section VI.6| or [2] and references given
there).

For another instance, a time-inhomogeneous Markov process (X (t));>o in a state S
becomes time-homogeneous if extended to the pair (X(t),t);>o and considered in the
Cartesian product space S x R*. Similarly, embedding the state-space of a non-Markovian
process in a more suitable space may lead to Markovian dynamics (see e.g. [3]). Hidden
Markov models, abounding in machine learning and biological sequence analysis [4,5], are
the other side of the same coin. Here, although the process is in fact Markovian from the
very beginning, what we observe is only a part or shadow of its state-space.

A similar trick to that described for time-inhomogeneous Markov process allows
reducing non-autonomous Cauchy problems to autonomous ones (see [1, Section VI.9,
FEvolution Semigroups|). However, interestingly, in contrast to the examples presented
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above, this transformation, presumably meant to simplify analysis, rarely helps in practice;
in fact, I know of no particular instance were it is really useful.

The next example is at least intriguing. As developed by Samuel Goldstein [6] and
Mark Kac [7], the stochastic process

5(15):/(—1)%(5)(15, t>0,

where N, (t),t > 0 is a Poisson process with expected value E N,(t) = at (a is a positive
constant), lies behind a probabilistic formula for telegraph equation. In [8] Jan Kisyriski
proves that the process

(&), (=)™)

which is £(t) “enriched” by the coordinate (—1)Y«® has independent increments in the
non-commutative group R x {—1,1} with the following multiplication rule:

(1,k) 0 (s,1) = (71 +, kl).

In other words, £(t),t > 0 is a Lévy process whereas (f(t), (—1)Na(t)) ,t >0 is a Markov
process. While the former information suffices for a successful treatment of the telegraph
equation (see e.g. [9,10]), the latter gives an additional insight and allows for natural
generalizations [8].

A Markovian Approach to a Single Server Queue

Our paper is devoted to an example of similar type originating from the queuing theory.
It is well-known that unless quite restrictive conditions are imposed, a process of the form

N(t) = # of customers in a queue at time ¢

is non-Markovian [11]|. However, as developed by e.g. D.R. Cox [12], in the case of M/G/1
queue (with Markov-type arrivals, general distribution of service time and one server), the
two-dimensional process

(N(),z(t), t >0, (2)

where z(t) is the time the customer being served has spent at a service point up to time ¢,
is Markov. Recently, the latter idea has been reinvestigated by P. Gwizdz in [13], where it
was noted that the resulting process may be viewed as a piece-wise deterministic process
of M.H.A. Davies [14-16] (see also [17]). Gwizdz’s paper contains (see Theorem 2.1 there)
a proof of the fact that the system

8paot(t) = —ap(t) + /OOO w(z)py(t, ) dz (3)
% - _W = (a4 p(@))p(t, @), (4)
W = —W — (a+ p(@))pn(t, z) + app(t,z), n > 2,2 >0, (5)
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(where o > 0 is intensity of customers’ arrivals, and pu(-), a non-negative, bounded function
is the hazard rate function for service time) supplemented with the following boundary
conditions:

pi(t,0) = /0 " palt, 2)u() da + apo(t)

pult,0) = / et () de, 0>, (6)

has, for any initial data, a unique mild solution in a certain space of type L' (see further
on for details). Here, p,(t,z) is the probability density that at time ¢ there are n > 1
customers and the one being served has spent time z at the service point; po(t) is the
probability that at that time there are no customers in the queue. From the perspective
of the theory of semigroups of operators, this theorem says that the related operator is
the generator of a semigroup in this space. The latter semigroup governs the evolution of
probability distributions of the process (2), and the fact that the semigroup is composed
of Markov operators is expressed in the relation
o0

po(t) + Z/pn(t,l’) dz =1,

n=1

which holds for all ¢ > 0 provided it holds for ¢ = 0.

Our Goal

Theorem 2.1 in [13] is obtained by a Greiner-like [18] domain-perturbation technique,
extended to include unbounded domain-perturbations in L'-type spaces, and designed in
such a way that the perturbed semigroup remains positive if the original semigroup is
positive (original Greiner’s perturbation does not posses this feature). In this paper, we
will show the same result more directly, using Lord Kelvin’s method of images [19-24].
Here is the main idea of the proof.

If all the terms involving « or p are removed from system (3)—(5), and boundary
conditions (6) are disregarded, the resulting equations may be solved explicitly
on the entire real line by the very simple formula:

po(t) = po(0), pu(t,z) =pa(0,2 — 1), t>0,zeR,n=12 ..., (7)

provided po(0) and p,(0,z) are known for all z € R. Since restoring all removed terms
is a matter of a bounded perturbation, the question of solving (3)—(6) reduces to that of
existence of a procedure which, given « and p, assigns to p,(0,:),n > 1 defined on R
their unique extensions to the entire R in such a way that functions (7), as restricted to
x > 0, solve (3)—(5) (with appropriate terms removed) and, at the same time, boundary
conditions (6) are satisfied. Note that although in the latter equations a and p may be
thought to be set to zero, they remain non-zero in the boundary conditions (6).
To prove that this idea works well is the aim of this paper.

1. The Main Theorem

Throughout the paper we assume that p is a bounded, non-negative function on R
and « > 0 is a positive constant.
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Let L'(R™) be the space of absolutely continuous functions on R, and let
L:=RxI"L'R"))

be the space of sequences (fn)nzo where fy is a real number and f,,,n > 1 are members of
LY(RT), such that

| (fduso Iz == 1fol + 3 lfull ey < oo;

n=1
when equipped with this norm, L is a Banach space. In what follows, we will often use the
following bounded linear functional on L:

Xy (fn)nzo = fo+ Z/fn(l') dx
n=1 0

Let D be the set of (f,),o € L such that
e cach f,,n > 1is absolutely continuous with f/ € L'(R™),

o > Iy < oo.

Also, let F,, : D — R be the linear functionals given by

Fy (fu)yog = F2(0) - (/ (2) fole) dz — arfo, (8)
(fM)m>o /,U fn+1 n > 2.

0

Here is the main theorem of the paper.

Theorem 1. The operator A, . defined on the domain

D(Aya) =D [ )ker F,

n>1

by the formula
A,u « (fn)n>(] (gn)n>0 )

where

[e.9]

i =—afu+ [ nla)fife)ds
0
g1 = —fi — (a+p)fi,
gn=—fr—(a+ ) futafny, n>2,

generates a strongly continuous semigroup of Markov operators in L.

To recall, a bounded linear operator P : L — L is said to be a Markov operator, if

P (fn),>o is non-negative when (f,),~, is, and for such (f.),>, we have 3P (f.),>o =

X1 (fn)n>0 If the latter equality is replaced by the inequality ZIP(fn)n>0 < ¥ (fn)n>0
the operator is said to be sub-Markov.

32 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2018, vol. 11, no. 3, pp. 29-43



MATEMATNYECKOE MOJIEJINPOBAHUE

2. Reduction to a Simpler Case

We will show now that Theorem 1 may be deduced from the following result.

Theorem 2. The operator B,, ., defined on the domain D(B,, ) = D(A,.«) by the formula

Bma (fn)nzo = (gn)nzo )

where
90:()7 gn:_ffr,w TLZ 17

generates a strongly continuous semigroup of positive operators in L.

Remark 1. We stress again that, while o and p are not featuring in the definition of the
“action” of B, ., both are involved in the definition of its domain. Hence, what we are
facing here is a domain-changing perturbation; such perturbations were studied in detail
by G. Greiner [18], and the approach presented in [13] follows Greiner’s path. We are using
a different method, i.e., Lord Kelvin’s method of images that has been developed as a way
to deal with boundary conditions in semigroup theory in [19-23| and [24]. For yet different
ways of dealing with boundary conditions see [25] and [26].

Suppose thus that B, , generates a semigroup of positive operators and then choose
a k such that

K > sup p(x).
x>0

Then, for any (fn),>o € D(Aua) = D(Bua),

Apa (fn)nzo = Bua (f'ﬂ)nZO + Clam (fn)nzo — (a+ k) (fn>n20 )

where C), o, is the bounded, non-negative, linear operator defined by

Cuam (fn)nzo = (gn)nzo

with

6o = / W@ fu@)de+ wfo, g1 = (5 — W) fi,
0

In = ("i - :u)fn +afn_1,n>2.

Thus, by the Phillips perturbation theorem, B,, ,+C), o generates a semigroup of positive
operators and this implies that so does A, ., because the last two operators differ by a
constant multiple of the identity operator.

Hence, we are left with showing that the semigroup generated by A, . is composed
of Markov operators. A well-known necessary and sufficient condition for that is for
A(A— Au,a)_1 to be Markov operators for all sufficiently large A > 0. Since A, , generates
a semigroup, for sufficiently large A\ the resolvent equation

A (fn)nzo — Apa (fn)nzo = (gn)nzo
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has a unique solution for all (¢,),,-o- Because the semigroup generated by A,, , is composed
of positive operators, the map assigning solution (fn) >0 10 (Gn),>¢ is positive also (since
the resolvent is the Laplace transform of the semigroup). Applying the functional ¥; to
both sides of the resolvent equation we see thus that all we need to prove is that

SrApa (fa)nzo =0 9)

for all non-negative (f,.),~o € D(Aua)-

To this end, we first use (8) to calculate (writing, for simplicity of notation, [ puf,
R+

instead of Tu(a:)fn(x) dz)
0

Z fn(o) = OéfO + Z/,Unfnv <f”)n20 c D(Au,a)-
n=1 n:2RJr
On the other hand, with similar notation,

EIA;L,& (fn)nzo = _afO - Z/,unfn - Z/f?lz
71:2IRJF n:l]RJr

Since [ fi = —f,(0), these two relations combined imply (9), completing the proof.
R+

Remark 2. The last calculation shows that (9) holds in fact for all vectors (f,),s, in

D(A, ) whether positive or not. Hence, A (A — AH,Q)_1 preserves the functional X;, i.e.,
SN = Aua) T (fa)20 = B1 (fu), 5, for all sufficiently large \. Therefore, the semigroup
generated by A4, , also preserves this functional, i.e., the value of ¥; does not change along
this semigroup’s trajectories (this is a stronger condition than that of being composed of
Markov operators).

3. A Semigroup in a “Larger” Space

A first step in the procedure of the Lord Kelvin method of images is to construct a
semigroup generated “by B, ., without boundary conditions” in a “larger” space. This is
our goal in this section.

Let (fn),o € L, and consider an n > 1. Any extension of f, to a function f on R is
determined by g,(x) = f¢(—x), a function on R*. It would be nice to have g, € L*(R")
but this is rarely the case. Fortunately, for the particular extension we are looking for there
is an w > 0 such that all functions z — e “%g,(z) are in L'(RT). Hence, we introduce
LL(RT) as the space of functions g : Rt — R such that x — e ““g(z) is a member of
L'(RT). When equipped with the norm

lollaieey = [ lotole .
0

LL(R") is a Banach space.
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A pair (f,g) € L*(R") x LL(R™) may be identified with a function h on R: it suffices to
agree that h(z) = f(z),z > 0 and h(z) = g(—z) for z < 0. The space L. (R) of functions

h : R — R such that
TP /|h ]dx—i—/ ~o2p(— )| d

is finite, is a Banach space with this norm, and the spaces L'(R") x LL(R™) and L. (R)
are isometrically isomorphic. All our extensions will be members of L. (R) and sequences
of extensions will be members of

L, =R x I'(LL(R)),

the space of sequences (h,),~, where hg is a real number and h,,n > 1, are members of
LL(R), such that

I () Mz = !hoHZHh 2wy < 003

when equipped with this norm, L, is a Banach space.
The formula

T(Hh(z) = h(z —t), t>0,z€R, (10)

defines a strongly continuous semigroup in L} (R), and since
|T(t)h] Ly r) /|hx—t|dx+/|hx—t|dx—l—/|h —z —t)|le " dx

< e“’t/e‘w’”|h(—x |dx+/|h x |dx+ewt/e‘“’zlh<—x)\dx

0 0 t
< e hll Ly ()

the operator norm of T'(¢) does not exceed e**. A standard argument shows that the domain
D(G) of the generator G of {T'(t),t > 0} is composed of absolutely continuous members
h of LL(R) such that h’ € L} (R), and Gh = —h' on this domain.

It follows that

T() (ha)ysg = (o, T(O)h1, T .. (11)
defines a strongly continuous semigroup of operators in L,. The operator norm of 7 (t)
does not exceed e“*. The domain D(G) of the infinitesimal generator G of {7 (t),t > 0} is

composed of (h,),-, such that h,,n > 1 are absolutely continuous with A, € L’(R) and
(0,3, By, ... ) € Ly. For such (hy),, 5,
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4. Constructing the Images

As explained in the introduction to [20], given an (f,,),,~o € P(Bya) it is a good idea
to look for the sequence (fr%)mm € L, of extensions of its terms satisfying

F,T(t) (f;i)mzo =0, foralln>1,¢t>0, (12)

where F,, given by (8) is now treated as a functional defined on D(G). This condition

means that o

Fo(—t) = / w(@) f9 (@ — £ de + afo

0

and .

fo(—t) = /u(x)fﬁrl(a: —t)dx, for allm > 2t >0,
0
and thus may be rewritten as a requirement for

gn(2) = fP(=2), 220

as follows:

() = / gale — y)uly) dy + / w( + ) faly) dy + arfo,

0
o)

ga() = / G (1 — y)uly) dy + / W+ 9 fana(y)dy, > 2,2 >0,
0 0

This in turn simply means that we need to have

g1 =px g+ Ufy+ afo, Gn = P * Gny1 + U frgr, n>2, (13)

where U f(z fu r+y)fly)dy, f € LY(RT).

We note that while condition (12) may be formulated only for (f,.),~, in D(By.a), (13)
makes sense for all (f,),5, in L.

Lemma 1. Fiz w > |pllec = sup,sqpu(x). For each (fn),so € L there is precisely one
(9n)p>1 such that (13) holds and the sequence (fr?)mo defined by

15 = fo,
fr?(x):fn(x)a xr >0,
f(@) = ga(—x), <0,

15 a member of L.

Proof.
1. Let K, := I'(L,(R")) be the space of sequences (k,),~, such that k, € L(R")

and

| (K)ot I, == Z [knll L1, ety < 00
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Our task is thus to show that for any (f.),>, € L, there is precisely one (g,),>, € Ko
satisfying (13).
2. We start the proof by noting that U f defined below (13) belongs to L. (R") and

I 14]] o0
U flly+) < THf”Ll(RJr)' (14)

This is showed by the following calculation:

WUl < / / niz + 9)lf ()| dy de <

oo

< [l / )yt = L e,

0

Inequality (14) implies that

(fn)n>0 (Ufe+afo,Ufs,Ufs,...)

is a member of K, with

I o e < SNV Rl + A0 < B0y gy, )

w
n=2

3. Finally, for a fixed (f,),>, € L, let M : K, — K, be the map given by

M (kn)nZI = (p* kn+1)n21 +U (fn)nZO : (16)
For any k € LL(R™),
i x Blzaceny < Nallzace IMlzaceer < 0 iy e, (17)
It follows that Il
11 oo
| (e kn'f‘l)nZl Ire, < o | (kn)n21 [ (18)

Since ||p]|0 < w, M is a contraction mapping and Banach’s fixed point theorem implies
that there is precisely one (g,),~, € K, such that M (g,),>; = (gn),>,, i.e. precisely one
(gn)n>1 € Ko satisfying (13). 0

The sequence (gy),~;, Whose existence has just been established, will be called the
(i, a)-image of (fn)nzojand (fno)n>0 will be called the (i, a)-extension of (fy),,. We
note that for non-negative (f,), -, the vector U (f,), o is also non-negative, and thus the
map M defined in (16) leaves the non-negative cone in K, invariant. Since the fix-point
of M may be obtained as hm M (ky),, for any (kn),-, € K., and in particular we may

take (Ku),>1 = U (fu)nso 1t follows that (gn),>, i3 non-negative provided (fy),, is.
It is worth noting that (18) forces

1M G e < 0 G s+ 120 s e
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Thus, by induction,

¢ i
IMU Gl < 30 (V) e ol 021
=0
and so, using (15) and (g,),,>; = limg o MU (fr)nsos

< max(f|poo, @)
Z/{ n/n> [ T TR n)n> .
ST ol < P S (s (19)

We also need information on regularity of (u,«)-images, contained in Lemma 3 (see
later on) which in turn is based on the following Sobolev type inequality.

| (gn)nzl k., <

Lemma 2. Let w > 0. Suppose f € LL(R") is absolutely continuous with ' € LL(R™).
Then

|£0)] < wllflly ey + L N2y @)

Proof. The function = — e “? f(x) is also absolutely continuous with derivative equal to
e " f!(x) —we ¥ f(z). For x > 0 we have thus

e f(x) — £(0) = / eV f(y)] dy

Since the limit as x — oo of the right-hand side exists, so must the limit lim,_,,, e™“* f(x).
But the latter must be zero, = — e % f(x) being integrable. Therefore,

[e.o]

/ o f(y) — e ()] dy| < wllf e + 1 s,
0

as desired. O

Lemma 3. Fiz (f,),>, € D (see Section 1). Then gn,n > 1 are absolutely continuous
with g/, € LL(R") and

g ns1 I = ZHgnHLl R+)

Proof.
1. Suppose f € L'(R™) is absolutely continuous with f* € L*(R"). Then U f (defined
right after (13)) is absolutely continuous also, and

—(Uf) =01+ fO)p

2. Let (kn),>, = U (fn),>0 € Ko By point 1, each &, is absolutely continuous with
—kl, =Uf! .1+ fat1(0)p. Therefore, by Lemma 2 with w = 0 and (14),

o o0 o0
D Mkl @s < N0 A e + lullyen Y12 0)] <
n=1 n=2 n=2

< Y Z I fullor sy + T Z I foll o ey < oo.
n=2 n=2
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Combining this with (15) we see that

Il Fn )z e =+ 11 (B sy i < 00 (20)

e .
3. An induction argument shows that the n-th coordinate of M*(k,), o, is > u™* x
= i

kitn, £ > 1. Since (gn), >, = Zlim M (k,), -, we have
> o >

o0

Go= W skin, n>1 (21)

1=0

4. If a k € L} (R") is absolutely continuous with ¥ € L (R"), then so is p * k and
(u* k) = pu*k + k(0)u. Since (u* * k)(0) = 0 for 7 > 1, an induction argument shows
that , , ,

(Mz* * k)/ — ,U/Z* % k/ + k(O)MM, Z Z 1

This in turn yields
¢ ¢
(Z T kiJrn) Z T A N ()
i=0 i=1

5. We claim that

z(zuwwmnuy T HW) - ©2)

n=1 =0 =1

Since (use (17))

S Kl £ 323 (
n=1 1=0

1Kl et

=)
=1 =0
< Z | Z |k’ ||L1 R+)
= n=1
| (7)1 I,

S w- Hul!oo
is finite by (20), to prove (22) we need to estimate
S5 (00 -
n=1 i=1
By Lemma 2, however, this quantity does not exceed

> (—“lﬂw) > [wllkalln@) + Ikl s s =

i=1 n=1

1] ,
= ——— (|| (kn),, L (k). .
w—HuHoo( I (kn )y i + 1 (R s k)

and this is finite by (20). This completes the proof of (22).
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6. Let D(D) C LL(R™) be the set of absolutely continuous f € LL(RT) such that
f e LL(R"), and let Df = f’. A straightforward argument shows that D is closed.
Inequality (22) implies that for n > 1, the series

Ko+ > [ K, + i (0)7] (23)

i=1

converges absolutely in L] (R*). Tt follows that D(3\_, u™ % ki 1) (calculated in point 4.)
converges to the sum of this series. Since D is closed, g, (given by (21)) belongs to D(D),
i.e., it is absolutely continuous with g/, equal to the sum of the series (23). Combining

Ighllzs ey < Dl * oy + D rien (00 ||y e
=0

i=1

and (22), we complete the proof. O

5. Abstract Kelvin Formula for {e/Ze ¢t > 0}

The stage is now ready for the proof of Theorem 2. In fact, we will show the following

result, giving a somewhat deeper insight into the nature of the semigroup generated by
B

Heee

Theorem 3. Let R : L,(R) — LY(R") map an f € LL(R) to its restriction fipo0), and
let R : L, — L be defined by

R(fn>n20 = (f(h Rf17Rf2>Rf37 < )

Also, let £ : L — L, map elements of L to their (u, a)-extensions. The abstract Kelvin
formula

S(t) =RT(t)E, t>0, (24)

where {T(t),t > 0} is the translation semigroup of (11), defines a strongly continuous
semigroup of operators in L, and the infinitesimal generator of {S(t),t > 0} is B, 4.

To see that Theorem 2 is a direct consequence of Theorem 3 it suffices to recall from
the previous section that (u,a)-extensions of non-negative (f,),, are non-negative, and
that {7(t),t > 0} is a semigroup of non-negative operators. -

The proof of Theorem 3 will become more clear if we extract from it the following
lemma.

Lemma 4. Let (fy),59 € D(Bp.a) be fized.

(a) (fo)n>0, the (u,a)-extension of (fn),sq, belongs to the domain D(G) of the

n

infinitesimal generator of the translation semigroup (11),

(b) For allt > 0,T(t)(fn),so i the (1, a)-extension of its own restriction RT (t)(fn),>0-
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Proof. (a) By Lemma 3, our assumption implies that each g,,, n > 1 is absolutely continuous
with ¢/, € LL(R"). Moreover, by definition of g,,

o0

01(0) = Ufa(0) + cufo = / () faly) dy + aufy

9n(0) = U fry1(0 /M ) frs1(y) dy, n 2. (25)
0

Since (fin)mso € Nas1 ker Fr, fn(0) = ¢,(0) and so £ is absolutely continuous for all
n > 1. Moreover, by

1Y sy = ol @) + gl oy @y,

Lemma 3 implies
Z ||<f7<z>)/||L&,(]R) < 00
n=1

completing the proof of (a).
(b) Fix t > 0. By (a), (fY), ., is a member of D(G). It follows that so is (/*)

n>0 "

T (1) (fo)n>0 and that F,, 7 (s) (f?>) =0forall s > 0andn > 1 (on D(G), (12) and (13)
are equivalent). Therefore, for all s and n>1, F,T(s) (fn{:)mzo = F,T(s+t) (fn?)mzo =0.

This means, by definition, that (fn";)m>0 is the (u, a)-extension (of its own restriction). 0

Proof of Theorem 3

1. Fix w > ||u||oo, and let E, C L, be the space of (u, a)-extensions of members of
L. Inequality (19) shows that & mapping L onto E,, is bounded. Since £ has a bounded
inverse R, E,, is closed in L,,, and hence is a Banach space (with norm inherited from L,).
The spaces L and E,, are isomorphic with the isomorphism £ : L. — F,, and its inverse
R:E,— L.

2. Since D(B,,) is dense in L (as a straightforward argument shows), so is its
image £ED(B,, o) in E,. Lemma 4 now says that £D(B,, ) is invariant for the translation
semigroup {7 (t),t > 0}. It follows that so is E,. Hence, {7 (t),t > 0} restricted to E,, is
a strongly continuous semigroup. The semigroup defined by the abstract Kelvin formula
(24) is thus the isomorphic image of {7 (¢),t > 0} restricted to E,, and it is obviously
strongly continuous.

3. We are left with showing that the generator of {S(t),t > 0} is B, . To this end,
we recall that the generator of {7 (¢),t > 0} restricted to E,, is the part G, of G in E, (G
was defined in Section 3). Thus (f,?)n>0 € E, is a member of D(G,) (= D(G) N E,) iff

£2,n > 1 are absolutely continuous and (0, (f7), (f3),...) € Ly; then

Gp (£) o = —(0. (SO ()55

the vector on the right-hand side here automatically belongs to E,, since F,, is invariant
for the translation semigroup.
On the other hand, (f,),~, belongs to the domain of the generator, say Gy, of {S(t),t >

0} iff (ff)nzo =& ([n)n0 belongs to D(G,). Lemma 4 tells us that for (f,.),~, € D(By.a)
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the latter condition holds. Conversely, if (fff)mo is a member of D(G) N E,,, then each

f» (being the restriction of f) must be absolutely continuous with f/ € L*(RT), and we
must have

Z I foll o ey < Z 1) @) < oo
n=1 n=1

Also, absolute continuity of f¢ implies f,(0) = g,(0) for all n, and then a look at (25)
reveals that (f.),>, € >, ker F,, thus showing that D(G,) = D(B,,a)-
For such (f,.),,0,

Gi (fn)nzo =RGE (fn)nzo =R¢G (fr?)nzo =
= —R(0, ( 1<>)/a( 2<>)/7) = _(0>f{af£7“-) = Bua (fn)nzo-

This completes the proof. O
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JIOPO KEJIbBUH I AHJIPEN AHIPEEBIY MAPKOB
K OYEPE/IN C OAVMHOYHOI'O CEPBEPA
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