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Introduction

Background

As shown by an increasing body of examples, an intelligent enrichment of an underlying
state space may change the nature of a problem under consideration and allow for its
elegant solution. For instance, even the simplest scalar delay-di�erential equation

x′(t) = ax(t) + bx(t− τ), t ≥ 0, (1)

where a, b ∈ R and τ > 0 are given, does not lead to a well-posed problem if we think of
x(t) ∈ R as a state of a process at time t and desire to describe dynamics in R. One should
rather think of the evolution of �history segments of x�, i.e., say continuous, functions

ut : [−τ, 0] → R, t ≥ 0,

de�ned by ut(s) = x(s + t), s ∈ [−τ, 0] so that ut contains the entire information on x in
the time interval [t − τ, t]. Then, (1) may be rewritten as a di�erential equation in the
space C[−τ, 0] of continuous functions on [−τ, 0] and the related initial value (Cauchy)
problem is well-posed. As it transpires, this rather simple idea leads to a quite satisfying
theory and has far-reaching consequences (see [1, Section VI.6] or [2] and references given
there).

For another instance, a time-inhomogeneous Markov process (X(t))t≥0 in a state S
becomes time-homogeneous if extended to the pair (X(t), t)t≥0 and considered in the
Cartesian product space S×R+. Similarly, embedding the state-space of a non-Markovian
process in a more suitable space may lead to Markovian dynamics (see e.g. [3]). Hidden
Markov models, abounding in machine learning and biological sequence analysis [4,5], are
the other side of the same coin. Here, although the process is in fact Markovian from the
very beginning, what we observe is only a part or shadow of its state-space.

A similar trick to that described for time-inhomogeneous Markov process allows
reducing non-autonomous Cauchy problems to autonomous ones (see [1, Section VI.9,
Evolution Semigroups ]). However, interestingly, in contrast to the examples presented
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above, this transformation, presumably meant to simplify analysis, rarely helps in practice;
in fact, I know of no particular instance were it is really useful.

The next example is at least intriguing. As developed by Samuel Goldstein [6] and
Mark Kac [7], the stochastic process

ξ(t) =

t∫
0

(−1)Na(s) ds, t ≥ 0,

where Na(t), t ≥ 0 is a Poisson process with expected value ENa(t) = at (a is a positive
constant), lies behind a probabilistic formula for telegraph equation. In [8] Jan Kisy�nski
proves that the process (

ξ(t), (−1)Na(t)
)
,

which is ξ(t) �enriched� by the coordinate (−1)Na(t), has independent increments in the
non-commutative group R× {−1, 1} with the following multiplication rule:

(τ, k) ◦ (ς, l) = (τ l + ς, kl).

In other words, ξ(t), t ≥ 0 is a L�evy process whereas
(
ξ(t), (−1)Na(t)

)
, t ≥ 0 is a Markov

process. While the former information su�ces for a successful treatment of the telegraph
equation (see e.g. [9, 10]), the latter gives an additional insight and allows for natural
generalizations [8].

A Markovian Approach to a Single Server Queue

Our paper is devoted to an example of similar type originating from the queuing theory.
It is well-known that unless quite restrictive conditions are imposed, a process of the form

N(t) = # of customers in a queue at time t

is non-Markovian [11]. However, as developed by e.g. D.R. Cox [12], in the case of M/G/1
queue (with Markov-type arrivals, general distribution of service time and one server), the
two-dimensional process

(N(t), x(t)), t ≥ 0, (2)

where x(t) is the time the customer being served has spent at a service point up to time t,
is Markov. Recently, the latter idea has been reinvestigated by P. Gwi
zd
z in [13], where it
was noted that the resulting process may be viewed as a piece-wise deterministic process
of M.H.A. Davies [14�16] (see also [17]). Gwi
zd
z's paper contains (see Theorem 2.1 there)
a proof of the fact that the system

∂p0(t)

∂t
= −αp0(t) +

∫ ∞

0

µ(x)p1(t, x) dx (3)

∂p1(t, x)

∂t
= −∂p1(t, x)

∂x
− (α + µ(x))p1(t, x), (4)

∂pn(t, x)

∂t
= −∂pn(t, x)

∂x
− (α + µ(x))pn(t, x) + αpn−1(t, x), n ≥ 2, x > 0, (5)
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(where α > 0 is intensity of customers' arrivals, and µ(·), a non-negative, bounded function
is the hazard rate function for service time) supplemented with the following boundary
conditions:

p1(t, 0) =

∫ ∞

0

p2(t, x)µ(x) dx+ αp0(t)

pn(t, 0) =

∫ ∞

0

pn+1(t, x)µ(x) dx, n ≥ 2, (6)

has, for any initial data, a unique mild solution in a certain space of type L1 (see further
on for details). Here, pn(t, x) is the probability density that at time t there are n ≥ 1
customers and the one being served has spent time x at the service point; p0(t) is the
probability that at that time there are no customers in the queue. From the perspective
of the theory of semigroups of operators, this theorem says that the related operator is
the generator of a semigroup in this space. The latter semigroup governs the evolution of
probability distributions of the process (2), and the fact that the semigroup is composed
of Markov operators is expressed in the relation

p0(t) +
∞∑
n=1

∞∫
0

pn(t, x) dx = 1,

which holds for all t > 0 provided it holds for t = 0.

Our Goal

Theorem 2.1 in [13] is obtained by a Greiner-like [18] domain-perturbation technique,
extended to include unbounded domain-perturbations in L1-type spaces, and designed in
such a way that the perturbed semigroup remains positive if the original semigroup is
positive (original Greiner's perturbation does not posses this feature). In this paper, we
will show the same result more directly, using Lord Kelvin's method of images [19�24].
Here is the main idea of the proof.

If all the terms involving α or µ are removed from system (3)�(5), and boundary
conditions (6) are disregarded, the resulting equations may be solved explicitly
on the entire real line by the very simple formula:

p0(t) = p0(0), pn(t, x) = pn(0, x− t), t ≥ 0, x ∈ R, n = 1, 2, . . . , (7)

provided p0(0) and pn(0, x) are known for all x ∈ R. Since restoring all removed terms
is a matter of a bounded perturbation, the question of solving (3)�(6) reduces to that of
existence of a procedure which, given α and µ, assigns to pn(0, ·), n ≥ 1 de�ned on R+

their unique extensions to the entire R in such a way that functions (7), as restricted to
x ≥ 0, solve (3)�(5) (with appropriate terms removed) and, at the same time, boundary
conditions (6) are satis�ed. Note that although in the latter equations α and µ may be
thought to be set to zero, they remain non-zero in the boundary conditions (6).

To prove that this idea works well is the aim of this paper.

1. The Main Theorem

Throughout the paper we assume that µ is a bounded, non-negative function on R+

and α > 0 is a positive constant.
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Let L1(R+) be the space of absolutely continuous functions on R+, and let

L := R× l1(L1(R+))

be the space of sequences (fn)n≥0 where f0 is a real number and fn, n ≥ 1 are members of
L1(R+), such that

∥ (fn)n≥0 ∥L := |f0|+
∞∑
n=1

∥fn∥L1(R+) < ∞;

when equipped with this norm, L is a Banach space. In what follows, we will often use the
following bounded linear functional on L:

ΣI (fn)n≥0 = f0 +
∞∑
n=1

∞∫
0

fn(x) dx.

Let D be the set of (fn)n≥0 ∈ L such that

• each fn, n ≥ 1 is absolutely continuous with f ′
n ∈ L1(R+),

•
∑∞

n=1 ∥f ′
n∥L1(R+) < ∞.

Also, let Fn : D → R be the linear functionals given by

F1 (fm)m≥0 = f1(0)−
∞∫
0

µ(x)f2(x) dx− αf0, (8)

Fn (fm)m≥0 = fn(0)−
∞∫
0

µ(x)fn+1(x) dx, n ≥ 2.

Here is the main theorem of the paper.

Theorem 1. The operator Aµ,α de�ned on the domain

D(Aµ,α) = D ∩
∩
n≥1

kerFn

by the formula
Aµ,α (fn)n≥0 = (gn)n≥0 ,

where

g0 = −αf0 +

∞∫
0

µ(x)f1(x) dx,

g1 = −f ′
1 − (α + µ)f1,

gn = −f ′
n − (α + µ)fn + αfn−1, n ≥ 2,

generates a strongly continuous semigroup of Markov operators in L.

To recall, a bounded linear operator P : L → L is said to be a Markov operator, if
P (fn)n≥0 is non-negative when (fn)n≥0 is, and for such (fn)n≥0 we have ΣIP (fn)n≥0 =
ΣI (fn)n≥0. If the latter equality is replaced by the inequality ΣIP (fn)n≥0 ≤ ΣI (fn)n≥0

the operator is said to be sub-Markov.
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2. Reduction to a Simpler Case

We will show now that Theorem 1 may be deduced from the following result.

Theorem 2. The operator Bµ,α de�ned on the domain D(Bµ,α) = D(Aµ,α) by the formula

Bµ,α (fn)n≥0 = (gn)n≥0 ,

where

g0 = 0, gn = −f ′
n, n ≥ 1,

generates a strongly continuous semigroup of positive operators in L.

Remark 1. We stress again that, while α and µ are not featuring in the de�nition of the
�action� of Bµ,α, both are involved in the de�nition of its domain. Hence, what we are
facing here is a domain-changing perturbation; such perturbations were studied in detail
by G. Greiner [18], and the approach presented in [13] follows Greiner's path. We are using
a di�erent method, i.e., Lord Kelvin's method of images that has been developed as a way
to deal with boundary conditions in semigroup theory in [19�23] and [24]. For yet di�erent
ways of dealing with boundary conditions see [25] and [26].

Suppose thus that Bµ,α generates a semigroup of positive operators and then choose
a κ such that

κ ≥ sup
x≥0

µ(x).

Then, for any (fn)n≥0 ∈ D(Aµ,α) = D(Bµ,α),

Aµ,α (fn)n≥0 = Bµ,α (fn)n≥0 + Cµ,α,κ (fn)n≥0 − (α + κ) (fn)n≥0 ,

where Cµ,α,κ is the bounded, non-negative, linear operator de�ned by

Cµ,α,κ (fn)n≥0 = (gn)n≥0

with

g0 =

∞∫
0

µ(x)f1(x) dx+ κf0, g1 = (κ− µ)f1,

gn = (κ− µ)fn + αfn−1, n ≥ 2.

Thus, by the Phillips perturbation theorem, Bµ,α+Cµ,α,κ generates a semigroup of positive
operators and this implies that so does Aµ,α, because the last two operators di�er by a
constant multiple of the identity operator.

Hence, we are left with showing that the semigroup generated by Aµ,α is composed
of Markov operators. A well-known necessary and su�cient condition for that is for
λ (λ− Aµ,α)

−1 to be Markov operators for all su�ciently large λ > 0. Since Aµ,α generates
a semigroup, for su�ciently large λ the resolvent equation

λ (fn)n≥0 − Aµ,α (fn)n≥0 = (gn)n≥0
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has a unique solution for all (gn)n≥0. Because the semigroup generated by Aµ,α is composed
of positive operators, the map assigning solution (fn)n≥0 to (gn)n≥0 is positive also (since
the resolvent is the Laplace transform of the semigroup). Applying the functional ΣI to
both sides of the resolvent equation we see thus that all we need to prove is that

ΣIAµ,α (fn)n≥0 = 0 (9)

for all non-negative (fn)n≥0 ∈ D(Aµ,α).

To this end, we �rst use (8) to calculate (writing, for simplicity of notation,
∫
R+

µfn

instead of
∞∫
0

µ(x)fn(x) dx)

∞∑
n=1

fn(0) = αf0 +
∞∑
n=2

∫
R+

µnfn, (fn)n≥0 ∈ D(Aµ,α).

On the other hand, with similar notation,

ΣIAµ,α (fn)n≥0 = −αf0 −
∞∑
n=2

∫
R+

µnfn −
∞∑
n=1

∫
R+

f ′
n.

Since
∫
R+

f ′
n = −fn(0), these two relations combined imply (9), completing the proof.

Remark 2. The last calculation shows that (9) holds in fact for all vectors (fn)n≥0 in

D(Aµ,α) whether positive or not. Hence, λ (λ− Aµ,α)
−1 preserves the functional ΣI , i.e.,

ΣIλ (λ− Aµ,α)
−1 (fn)n≥0 = ΣI (fn)n≥0 for all su�ciently large λ. Therefore, the semigroup

generated by Aµ,α also preserves this functional, i.e., the value of ΣI does not change along
this semigroup's trajectories (this is a stronger condition than that of being composed of
Markov operators).

3. A Semigroup in a �Larger� Space

A �rst step in the procedure of the Lord Kelvin method of images is to construct a
semigroup generated �by Bµ,α without boundary conditions� in a �larger� space. This is
our goal in this section.

Let (fn)n≥0 ∈ L, and consider an n ≥ 1. Any extension of fn to a function f♢
n on R is

determined by gn(x) = f♢
n (−x), a function on R+. It would be nice to have gn ∈ L1(R+)

but this is rarely the case. Fortunately, for the particular extension we are looking for there
is an ω ≥ 0 such that all functions x 7→ e−ωxgn(x) are in L1(R+). Hence, we introduce
L1

ω(R+) as the space of functions g : R+ → R such that x 7→ e−ωxg(x) is a member of
L1(R+). When equipped with the norm

∥g∥L1
ω(R+) =

∞∫
0

|g(x)|e−ωx dx,

L1
ω(R+) is a Banach space.
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A pair (f, g) ∈ L1(R+)×L1
ω(R+) may be identi�ed with a function h on R: it su�ces to

agree that h(x) = f(x), x ≥ 0 and h(x) = g(−x) for x < 0. The space L1
ω(R) of functions

h : R → R such that

∥h∥L1
ω(R) :=

∞∫
0

|h(x)| dx+

∞∫
0

e−ωx|h(−x)| dx

is �nite, is a Banach space with this norm, and the spaces L1(R+) × L1
ω(R+) and L1

ω(R)
are isometrically isomorphic. All our extensions will be members of L1

ω(R) and sequences
of extensions will be members of

Lω := R× l1(L1
ω(R)),

the space of sequences (hn)n≥0 where h0 is a real number and hn, n ≥ 1, are members of
L1

ω(R), such that

∥ (hn)n≥0 ∥Lω := |h0|+
∞∑
n=1

∥hn∥L1
ω(R) < ∞;

when equipped with this norm, Lω is a Banach space.
The formula

T (t)h(x) = h(x− t), t ≥ 0, x ∈ R, (10)

de�nes a strongly continuous semigroup in L1
ω(R), and since

∥T (t)h∥L1
ω(R) ≤

t∫
0

|h(x− t)| dx+

∞∫
t

|h(x− t)| dx+

∞∫
0

|h(−x− t)|e−ωx dx

≤ eωt
t∫

0

e−ωx|h(−x)| dx+

∞∫
0

|h(x)| dx+ eωt
∞∫
t

e−ωx|h(−x)| dx

≤ eωt∥h∥L1
ω(R),

the operator norm of T (t) does not exceed eωt. A standard argument shows that the domain
D(G) of the generator G of {T (t), t ≥ 0} is composed of absolutely continuous members
h of L1

ω(R) such that h′ ∈ L1
ω(R), and Gh = −h′ on this domain.

It follows that

T (t) (hn)n≥0 = (h0, T (t)h1, T (t)h2, . . . ) (11)

de�nes a strongly continuous semigroup of operators in Lω. The operator norm of T (t)
does not exceed eωt. The domain D(G) of the in�nitesimal generator G of {T (t), t ≥ 0} is
composed of (hn)n≥0 such that hn, n ≥ 1 are absolutely continuous with h′

n ∈ L1
ω(R) and

(0, h′
1, h

′
2, . . . ) ∈ Lω. For such (hn)n≥0,

G (hn)n≥0 = −(0, h′
1, h

′
2, . . . ).
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4. Constructing the Images

As explained in the introduction to [20], given an (fm)m≥0 ∈ D(Bµ,α) it is a good idea

to look for the sequence
(
f♢
m

)
m≥0

∈ Lω of extensions of its terms satisfying

FnT (t)
(
f♢
m

)
m≥0

= 0, for all n ≥ 1, t ≥ 0, (12)

where Fn given by (8) is now treated as a functional de�ned on D(G). This condition
means that

f♢
1 (−t) =

∞∫
0

µ(x)f♢
2 (x− t) dx+ αf0

and

f♢
n (−t) =

∞∫
0

µ(x)f♢
n+1(x− t) dx, for all n ≥ 2, t ≥ 0,

and thus may be rewritten as a requirement for

gn(x) := f♢
n (−x), x ≥ 0

as follows:

g1(x) =

x∫
0

g2(x− y)µ(y) dy +

∞∫
0

µ(x+ y)f2(y) dy + αf0,

gn(x) =

x∫
0

gn+1(x− y)µ(y) dy +

∞∫
0

µ(x+ y)fn+1(y) dy, n ≥ 2, x ≥ 0.

This in turn simply means that we need to have

g1 = µ ∗ g2 + Uf2 + αf0, gn = µ ∗ gn+1 + Ufn+1, n ≥ 2, (13)

where Uf(x) =
∞∫
0

µ(x+ y)f(y) dy, f ∈ L1(R+).

We note that while condition (12) may be formulated only for (fn)n≥0 in D(Bµ,α), (13)
makes sense for all (fn)n≥0 in L.

Lemma 1. Fix ω > ∥µ∥∞ := supx≥0 µ(x). For each (fn)n≥0 ∈ L there is precisely one

(gn)n≥1 such that (13) holds and the sequence
(
f♢
n

)
n≥0

de�ned by

f♢
0 = f0,

f♢
n (x) = fn(x), x ≥ 0,

f♢
n (x) = gn(−x), x < 0,

is a member of Lω.

Proof.
1. Let Kω := l1(L1

ω(R+)) be the space of sequences (kn)n≥1 such that kn ∈ L1
ω(R+)

and

∥ (kn)n≥1 ∥Kω :=
∞∑
n=1

∥kn∥L1
ω(R+) < ∞.
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Our task is thus to show that for any (fn)n≥0 ∈ L, there is precisely one (gn)n≥1 ∈ Kω

satisfying (13).
2. We start the proof by noting that Uf de�ned below (13) belongs to L1

ω(R+) and

∥Uf∥L1
ω(R+) ≤

∥µ∥∞
ω

∥f∥L1(R+). (14)

This is showed by the following calculation:

∥Uf∥L1
ω(R+) ≤

∞∫
0

e−ωx

∞∫
0

µ(x+ y)|f(y)| dy dx ≤

≤
∞∫
0

e−ωx∥µ∥∞

∞∫
0

|f(y)| dy dx =
∥µ∥∞
ω

∥f∥L1(R+).

Inequality (14) implies that

U (fn)n≥0 := (Uf2 + αf0, Uf3, Uf4, ...)

is a member of Kω with

∥U (fn)n≥0 ∥Kω ≤
∞∑
n=2

∥Ufn∥L1
ω(R+) +

α|f0|
ω

≤ max(∥µ∥∞, α)

ω
∥ (fn)n≥0 ∥L. (15)

3. Finally, for a �xed (fn)n≥0 ∈ L, let M : Kω → Kω be the map given by

M (kn)n≥1 = (µ ∗ kn+1)n≥1 + U (fn)n≥0 . (16)

For any k ∈ L1
ω(R+),

∥µ ∗ k∥L1
ω(R+) ≤ ∥µ∥L1

ω(R+) ∥k∥L1
ω(R+) ≤

∥µ∥∞
ω

∥k∥L1
ω(R+). (17)

It follows that

∥ (µ ∗ kn+1)n≥1 ∥Kω ≤ ∥µ∥∞
ω

∥ (kn)n≥1 ∥Kω . (18)

Since ∥µ∥∞ < ω, M is a contraction mapping and Banach's �xed point theorem implies
that there is precisely one (gn)n≥1 ∈ Kω such that M (gn)n≥1 = (gn)n≥1, i.e. precisely one
(gn)n≥1 ∈ Kω satisfying (13). 2

The sequence (gn)n≥1, whose existence has just been established, will be called the

(µ, α)-image of (fn)n≥0, and
(
f♢
n

)
n≥0

will be called the (µ, α)-extension of (fn)n≥0. We

note that for non-negative (fn)n≥0, the vector U (fn)n≥0 is also non-negative, and thus the
map M de�ned in (16) leaves the non-negative cone in Kω invariant. Since the �x-point
of M may be obtained as lim

l→∞
Ml (kn)n≥1 for any (kn)n≥1 ∈ Kω and in particular we may

take (kn)n≥1 = U (fn)n≥0 it follows that (gn)n≥1 is non-negative provided (fn)n≥0 is.
It is worth noting that (18) forces

∥M (kn)n≥1 ∥Kω ≤ ∥µ∥∞
ω

∥ (kn)n≥1 ∥Kω + ∥U (fn)n≥0 ∥Kω .
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Thus, by induction,

∥MℓU (fn)n≥0 ∥Kω ≤
ℓ∑

i=0

(
∥µ∥∞
ω

)i

∥U (fn)n≥0 ∥Kω , ℓ ≥ 1,

and so, using (15) and (gn)n≥1 = limℓ→∞ MℓU (fn)n≥0,

∥ (gn)n≥1 ∥Kω ≤ ω

ω − ∥µ∥∞
∥U (fn)n≥0 ∥Kω ≤ max(∥µ∥∞, α)

ω − ∥µ∥∞
∥ (fn)n≥0 ∥L. (19)

We also need information on regularity of (µ, α)-images, contained in Lemma 3 (see
later on) which in turn is based on the following Sobolev type inequality.

Lemma 2. Let ω ≥ 0. Suppose f ∈ L1
ω(R+) is absolutely continuous with f ′ ∈ L1

ω(R+).
Then

|f(0)| ≤ ω∥f∥L1
ω(R+) + ∥f ′∥L1

ω(R+).

Proof. The function x 7→ e−ωxf(x) is also absolutely continuous with derivative equal to
e−ωxf ′(x)− ωe−ωxf(x). For x ≥ 0 we have thus

e−ωxf(x)− f(0) =

x∫
0

[e−ωyf(y)]′ dy.

Since the limit as x → ∞ of the right-hand side exists, so must the limit limx→∞ e−ωxf(x).
But the latter must be zero, x 7→ e−ωxf(x) being integrable. Therefore,

|f(0)| =

∣∣∣∣∣∣
∞∫
0

[ωe−ωyf(y)− e−ωyf ′(y)] dy

∣∣∣∣∣∣ ≤ ω∥f∥L1
ω(R+) + ∥f ′∥L1

ω(R+),

as desired. 2

Lemma 3. Fix (fn)n≥1 ∈ D (see Section 1). Then gn, n ≥ 1 are absolutely continuous
with g′n ∈ L1

ω(R+) and

∥ (g′n)n≥1 ∥Kω =
∞∑
n=1

∥g′n∥L1
ω(R+) < ∞.

Proof.
1. Suppose f ∈ L1(R+) is absolutely continuous with f ′ ∈ L1(R+). Then Uf (de�ned

right after (13)) is absolutely continuous also, and

−(Uf)′ = Uf ′ + f(0)µ.

2. Let (kn)n≥1 := U (fn)n≥0 ∈ Kω. By point 1, each kn is absolutely continuous with
−k′

n = Uf ′
n+1 + fn+1(0)µ. Therefore, by Lemma 2 with ω = 0 and (14),

∞∑
n=1

∥k′
n∥L1

ω(R+) ≤
∞∑
n=2

∥Uf ′
n∥L1

ω(R+) + ∥µ∥L1
ω(R+)

∞∑
n=2

|fn(0)| ≤

≤ ∥µ∥∞
ω

∞∑
n=2

∥f ′
n∥L1(R+) +

∥µ∥∞
ω

∞∑
n=2

∥f ′
n∥L1(R+) < ∞.
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Combining this with (15) we see that

∥ (kn)n≥1 ∥Kω + ∥ (k′
n)n≥1 ∥Kω < ∞. (20)

3. An induction argument shows that the n-th coordinate of Mℓ (kn)n≥1 is
ℓ∑

i=0

µi∗ ∗

ki+n, ℓ ≥ 1. Since (gn)n≥1 = lim
ℓ→∞

Mℓ (kn)n≥1 we have

gn =
∞∑
i=0

µi∗ ∗ ki+n, n ≥ 1. (21)

4. If a k ∈ L1
ω(R+) is absolutely continuous with k′ ∈ L1

ω(R+), then so is µ ∗ k and
(µ ∗ k)′ = µ ∗ k′ + k(0)µ. Since (µi∗ ∗ k)(0) = 0 for i ≥ 1, an induction argument shows
that

(µi∗ ∗ k)′ = µi∗ ∗ k′ + k(0)µi∗, i ≥ 1.

This in turn yields (
ℓ∑

i=0

µi∗ ∗ ki+n

)′

=
ℓ∑

i=0

µi∗ ∗ k′
i+n +

ℓ∑
i=1

ki+n(0)µ
i∗.

5. We claim that

∞∑
n=1

(
∞∑
i=0

∥µi∗ ∗ k′
i+n∥L1

ω(R+) +
∞∑
i=1

∥ki+n(0)µ
i∗∥L1

ω(R+)

)
< ∞. (22)

Since (use (17))

∞∑
n=1

∞∑
i=0

∥µi∗ ∗ k′
i+n∥L1

ω(R+) ≤
∞∑
n=1

∞∑
i=0

(
∥µ∥∞
ω

)i

∥k′
i+n∥L1

ω(R+)

≤
∞∑
i=0

(
∥µ∥∞
ω

)i ∞∑
n=1

∥k′
n∥L1

ω(R+)

=
ω

ω − ∥µ∥∞
∥ (k′

n)n≥1 ∥Kω

is �nite by (20), to prove (22) we need to estimate

∞∑
n=1

∞∑
i=1

∥ki+n(0)µ
i∗∥L1

ω(R+).

By Lemma 2, however, this quantity does not exceed

∞∑
i=1

(
∥µ∥∞
ω

)i ∞∑
n=1

[
ω∥kn∥L1

ω(R+) + ∥k′
n∥L1

ω(R+)

]
=

=
∥µ∥∞

ω − ∥µ∥∞
(
ω∥ (kn)n≥1 ∥Kω + ∥ (k′

n)n≥1 ∥Kω

)
and this is �nite by (20). This completes the proof of (22).
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6. Let D(D) ⊂ L1
ω(R+) be the set of absolutely continuous f ∈ L1

ω(R+) such that
f ′ ∈ L1

ω(R+), and let Df = f ′. A straightforward argument shows that D is closed.
Inequality (22) implies that for n ≥ 1, the series

k′
n +

∞∑
i=1

[
µi∗ ∗ k′

i+n + ki+n(0)µ
i∗] (23)

converges absolutely in L1
ω(R+). It follows that D(

∑ℓ
i=0 µ

i∗ ∗ ki+n) (calculated in point 4.)
converges to the sum of this series. Since D is closed, gn (given by (21)) belongs to D(D),
i.e., it is absolutely continuous with g′n equal to the sum of the series (23). Combining

∥g′n∥L1
ω(R+) ≤

∞∑
i=0

∥µi∗ ∗ k′
i+n∥L1

ω(R+) +
∞∑
i=1

∥ki+n(0)µ
i∗∥L1

ω(R+)

and (22), we complete the proof. 2

5. Abstract Kelvin Formula for {etBµ,α, t ≥ 0}
The stage is now ready for the proof of Theorem 2. In fact, we will show the following

result, giving a somewhat deeper insight into the nature of the semigroup generated by
Bµ,α.

Theorem 3. Let R : L1
ω(R) → L1(R+) map an f ∈ L1

ω(R) to its restriction f|[0,∞), and
let R : Lω → L be de�ned by

R (fn)n≥0 = (f0, Rf1, Rf2, Rf3, . . . ).

Also, let E : L → Lω map elements of L to their (µ, α)-extensions. The abstract Kelvin
formula

S(t) = RT (t)E , t ≥ 0, (24)

where {T (t), t ≥ 0} is the translation semigroup of (11), de�nes a strongly continuous
semigroup of operators in L, and the in�nitesimal generator of {S(t), t ≥ 0} is Bµ,α.

To see that Theorem 2 is a direct consequence of Theorem 3 it su�ces to recall from
the previous section that (µ, α)-extensions of non-negative (fn)n≥0 are non-negative, and
that {T (t), t ≥ 0} is a semigroup of non-negative operators.

The proof of Theorem 3 will become more clear if we extract from it the following
lemma.

Lemma 4. Let (fn)n≥0 ∈ D(Bµ,α) be �xed.

(a)
(
f♢
n

)
n≥0

, the (µ, α)-extension of (fn)n≥0, belongs to the domain D(G) of the

in�nitesimal generator of the translation semigroup (11),

(b) For all t ≥ 0, T (t)(fn)n≥0 is the (µ, α)-extension of its own restriction RT (t)(fn)n≥0.
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Proof. (a) By Lemma 3, our assumption implies that each gn, n ≥ 1 is absolutely continuous
with g′n ∈ L1

ω(R+). Moreover, by de�nition of gn,

g1(0) = Uf2(0) + αf0 =

∞∫
0

µ(y)f2(y) dy + αf0

gn(0) = Ufn+1(0) =

∞∫
0

µ(y)fn+1(y) dy, n ≥ 2. (25)

Since (fm)m≥0 ∈
∩

n≥1 kerFn, fn(0) = gn(0) and so f♢
n is absolutely continuous for all

n ≥ 1. Moreover, by
∥(f♢

n )
′∥L1

ω(R) = ∥f ′
n∥L1(R+) + ∥g′n∥L1

ω(R+),

Lemma 3 implies
∞∑
n=1

∥(f♢
n )

′∥L1
ω(R) < ∞,

completing the proof of (a).
(b) Fix t ≥ 0. By (a),

(
f♢
n

)
n≥0

is a member of D(G). It follows that so is
(
f♣
n

)
n≥0

:=

T (t)
(
f♢
n

)
n≥0

and that FnT (s)
(
f♢
m

)
m≥0

= 0 for all s ≥ 0 and n ≥ 1 (on D(G), (12) and (13)
are equivalent). Therefore, for all s and n ≥ 1, FnT (s)

(
f♣
m

)
m≥0

= FnT (s+t)
(
f♢
m

)
m≥0

= 0.

This means, by de�nition, that
(
f♣
m

)
m≥0

is the (µ, α)-extension (of its own restriction).2

Proof of Theorem 3
1. Fix ω > ∥µ∥∞, and let Eω ⊂ Lω be the space of (µ, α)-extensions of members of

L. Inequality (19) shows that E mapping L onto Eω is bounded. Since E has a bounded
inverse R, Eω is closed in Lω, and hence is a Banach space (with norm inherited from Lω).
The spaces L and Eω are isomorphic with the isomorphism E : L → Eω and its inverse
R : Eω → L.

2. Since D(Bµ,α) is dense in L (as a straightforward argument shows), so is its
image ED(Bµ,α) in Eω. Lemma 4 now says that ED(Bµ,α) is invariant for the translation
semigroup {T (t), t ≥ 0}. It follows that so is Eω. Hence, {T (t), t ≥ 0} restricted to Eω is
a strongly continuous semigroup. The semigroup de�ned by the abstract Kelvin formula
(24) is thus the isomorphic image of {T (t), t ≥ 0} restricted to Eω, and it is obviously
strongly continuous.

3. We are left with showing that the generator of {S(t), t ≥ 0} is Bµ,α. To this end,
we recall that the generator of {T (t), t ≥ 0} restricted to Eω is the part Gp of G in Eω (G
was de�ned in Section 3). Thus

(
f♢
n

)
n≥0

∈ Eω is a member of D(Gp) (= D(G) ∩ Eω) i�

f♢
n , n ≥ 1 are absolutely continuous and (0, (f♢

1 )
′, (f♢

2 )
′, . . . ) ∈ Lω; then

Gp
(
f♢
n

)
n≥0

= −(0, (f♢
1 )

′, (f♢
2 )

′, . . . );

the vector on the right-hand side here automatically belongs to Eω since Eω is invariant
for the translation semigroup.

On the other hand, (fn)n≥0 belongs to the domain of the generator, say G1, of {S(t), t ≥
0} i�

(
f♢
n

)
n≥0

= E (fn)n≥0 belongs to D(Gp). Lemma 4 tells us that for (fn)n≥0 ∈ D(Bµ,α)
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the latter condition holds. Conversely, if
(
f♢
n

)
n≥0

is a member of D(G) ∩ Eω, then each

fn (being the restriction of f♢
n ) must be absolutely continuous with f ′

n ∈ L1(R+), and we
must have

∞∑
n=1

∥f ′
n∥L1(R+) ≤

∞∑
n=1

∥(f♢
n )

′∥L1
ω(R) < ∞.

Also, absolute continuity of f♢
n implies fn(0) = gn(0) for all n, and then a look at (25)

reveals that (fn)n≥0 ∈
∩

n≥1 kerFn, thus showing that D(G1) = D(Bµ,α).
For such (fn)n≥0,

G1 (fn)n≥0 = RGE (fn)n≥0 = RG
(
f♢
n

)
n≥0

=

= −R(0, (f♢
1 )

′, (f♢
2 )

′, . . . ) = −(0, f ′
1, f

′
2, . . . ) = Bµ,α (fn)n≥0 .

This completes the proof. 2
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ËÎÐÄ ÊÅËÜÂÈÍ È ÀÍÄÐÅÉ ÀÍÄÐÅÅÂÈ× ÌÀÐÊÎÂ
Ê Î×ÅÐÅÄÈ Ñ ÎÄÈÍÎ×ÍÎÃÎ ÑÅÐÂÅÐÀ
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