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Based on the conjugate Darcy-Brinkman—Forchheymer hydrodynamic model and
Schumann thermal model with boundary conditions of the second kind, a model with
lumped parameters was proposed by means of geometric 2D averaging to identify the
integral kinetics of the temperature fields of a porous matrix and a Newtonian coolant
without phase transitions. The model was adapted for a heat-stressed surface by means
of a porous compact heat exchanger with uniform porosity and permeability, obeying the
modified Kozeny—Carman relation, in the form of a Cauchy problem, the solution of which
was obtained in the final analytical representation for the average volume temperatures
of the coolant and the porous matrix. The possibility of harmonic damped oscillations of
the temperature fields and the absence of coolant overheating in the starting condition of
the cooling system were shown. For the dimensionless time of establishing the stationary
functioning of the porous heat exchanger, an approximate estimate was obtained correlating
with the known data of computational and full-scale experiments.

Keywords: flat porous heat exchanger; heat-stressed surface; boundary conditions of the
second kind; time to settle a stationary warm regime.

Introduction

The classical use of porous materials for the intensification of single-phase heat-
exchange processes [1] is greatly supplemented by new substantive applications, such as
geothermal energy supply |2|, technologies for obtaining structured polymeric materials
[3], waste utilization in combustion in porous media [4], bioconvection in porous tissues
of living organisms [5], etc. This requires consideration of transport phenomena in porous
systems under nonstationary conditions [6].

The analysis of a wide range of phenomenological mathematical models of non-
stationary hydrothermal fields in porous media [7] showed that the representation of the
fundamental Darcy-Brinkman—Forchheymer and Schumann equations in the Hsu-Cheng
form for the laminar flow regime of the Newtonian coolant [8]
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is the most convincing when interpreting experimental data and meets the criteria of
qualitative and quantitative adequacy, where 7 is time; (p, , ¢;,) ;s density and dynamic
viscosity of the liquid; e is porosity; (p,cp), is density and heat capacity of the porous
skeleton; v is a liquid velocity vector; g is a gravitational acceleration vector; p is pressure;
K is a permeability of the medium; )/, \¢ are effective tensors of thermal conductivity
coefficients of the liquid and the porous body skeleton material; t;, ¢, are temperature of
the liquid and the skeleton of the porous body; ay is a coefficient of heat transfer between
the liquid phase and the skeleton of the porous body; a,f is a characteristic of surface area
of the wetted surface in the porous medium.

For the first time the numerical analysis (1) — (4), under the assumption of
homogeneity of the porous medium, constant thermophysical characteristics and local
thermal equilibrium between the liquid phase and the porous skeleton, was given in [9]
for the pulsational change in the liquid velocity at the entry to the porous layer with
boundary thermal conditions of the second kind. The articles in [10, 11| are devoted to the
experimental study of the settling of the temperature fields in porous media, in which the
laws of the formation of the thermal initial region as a function of porosity were studied.
However, the question related to the duration of the heating of the porous elements was
not illuminated, in spite of the continuing interest in nonstationary processes in porous
media [12].

1. Problem Statement and Synthesis of the Model

We consider a flat porous element in the 2 — D format in the Cartesian coordinate
system with the origin at the edge of the lower bounding plane, which is heat-generating
with the heat flux density ¢o. The longitudinal coordinate x is directed along the flow of
the heat carrier (with known values of its velocity in the input section ug = const and its
temperature ¢y = const), the transverse coordinate is perpendicular to the heat-generating
plane. The porous medium is bounded by the heat-insulating surface located parallel to
the heat-generating plane at the distance h (the surfaces bounding the porous medium
are impenetrable for the coolant). Under the same assumptions as in [9], but refusing to
simplify ¢; = t,, the system of equations (1) — (4) in the dimensionless form can be written
as [13]
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where 0 = wer/(ch); X = x/h; Y = y/h; U = ufug; V = v/ug; u, v are
components of the liquid velocity vector v; P = &?p/(psul); B = &?b; b is the
Forchheymers factor; Tf = X (t; —to) / (qoh); Ts = Xi(ts —to)/(qoh); A = M /XS
Re = pyuph/ (use?) is Reynolds number; Re , = pruod,/[6 (1 — &) uys] is pore Reynolds
number; Da = K /h? is Darcy number; Pr = e (pcp); ,uf/ (M py) is Prandtl number;
Nu, = ayd, /A is pore Nusselt number; d, is a characteristic size of the extraporate
space; Lu = [)\Z/(pcp)f] / [A:/ (pcy),] is modified Lykov criterion characterizing the
diffusion of heat in the liquid with respect to the diffusion of heat in the skeleton of a
porous medium.

The hypothesis of a unidirectional flow of a coolant in the laminar regime [13], taking
into account the fact that the diffusion of heat in the transverse direction of the porous
layer is substantially greater than in the longitudinal one (977,/0Y? > 9T7,/0X?)[14],
allows to write the system (5) — (9) in the simplified form
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with the thermal boundary conditions corresponding to the formulation of the problem
Ty (X,Y,0) =T, (X,Y,0) = 0, (12)
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When Da — 0, which corresponds to the maximum possible values of the heat
transfer interphase [15], the liquid velocity profile in the porous layer is close to the ideal
displacement regime, i.e. U ~ 1, which leads to the further simplification of system (10) —
(14), since there is no need to solve the hydrodynamic problem.

The transition from the model with distributed parameters (10) — (14) to the model
with lumped parameters is carried out according to the rule of geometric averaging

1 L
= 1
Tps(0) =+ / / Ty, (X,Y,0)dXdY,
0 0

where L = [/h, [ is a length of the porous heat exchanger. As a result, we obtain the
Cauchy problem for the system of ordinary differential equations of the first order
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2. Closing Relations

The classical physical model of porous media, as a rule, is presented in the form of
dense packing of spheres [16], the voids of which are interconnected and completely filled
with liquid, with only two phases: a liquid and a porous non-deformable skeleton. As the
thermophysical parameters in (15) — (17) are homogeneous in space coordinates and do
not depend on the temperature, they can be calculated from the relations [17]:

a =6(1-2) /d,, (18)

agp = Ag [2 +1,1Pr%” (Pfuodp/uf)()ﬁ] [y (19)

where Pr° = jic,p/Af; Mg is heat conductivity of the liquid;
N = [g +(0,1+0,5)Pr®” (pfuodp/uf)} A, (20)

A= (1—g)As, (21)

where ); is heat conductivity of the skeleton of the porous medium; d, is number-
average diameter of spherical particles in the porous layer. The dimensionless
parameters in (15) — (17) on the basis of (18) — (21) can be defined as follows:
Re = Re®/e?, Re, = Rel/[6(1—¢)], Pr = ePr’/(¢+0,3Pr°ReY), Nu, =

(2 +1, 1Pr01/3Ref/5) / (e +0,3Pr’Re}), where Re © = ppugh/pys, Re S = pruod, /iy

3. Solutions

The change in the temperatures of the coolant and the skeleton of the porous medium
from the dimensionless time is obtained by means of the one-sided integral Laplace
transform [18]
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when
[YAB + & (L' + B)]” > 4eyAB (L' + 2B), (22)
= 2evyANAB  eAsy + 2eyAAB eAsy + 2eyAAB
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f() 5159 81(81—82) p(l) 82(82—81) p(2) ( )
= 2evA (L' + 2B A A(L7'+2B
Ts (9) _ ey ( + ) YAS1 +€7 ( + )exp (319)+
5189 S1 (81 - 52)
A A(L ' +2B
(At AT 12B) (6,8, (24)
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where A = 1/(Pr-Re); B = Nu,Re/(Pr-Re2), v = 1/[(1-¢)Lu], w =

VAeYAB (L1 4 2B) — BAB + (L + B)P, so = — [7AB + £ (L™ + B)] /2,

$1 =80+ \/53 —4eyAB (L' +2B), 85 = 89 — \/sg —4eyAB (L' + 2B).

4. Computing Experiment

Let’s consider the real situation. Let the porous layer consists of dense packing of
identical copper ball elements with the diameter d, = 0,5-107°m, and £ = 0,4; h = 0,01m;
[ = 0,02m. Thermophysical characteristics of the coolant are close to water, then p; = 1000
kg/m?; ps = 2700 kg/m?; puy = 5-107* Pa-s; ¢,y = 4190 J/(kg-K); cps = 880J/(kg-K);
Ar = 0,68 W/(m-K); A\; =211 W/(m-K). The values of the determining parameters are
given in Table.

Table
Reg Pr Re, Re Lu A Nu,
20 0,930 0,278 125 0,004 0,007 2,719
100 0,245 1,389 625 0,015 0,027 1,235
200 0,128 2,778 1250 0,029 0,052 0,868

The dimensionless form of recording the equations of the mathematical model allows to
abstract from the specific value of the heat flux released by the cooled heat-stressed surface.
The results of the calculations show (Fig. 1) that with an increase in the Reynolds number,
the dimensionless time of establishment of the stationary regime increases. However, in
denominate quantity, it decreases, as value ug grows faster than 6. This means that a
larger flow of the coolant through a porous element leads to an early onset of a stationary
regime, which is consistent with physical concepts of heat transfer in porous media.

The local maximum of the temperature of the porous skeleton is explained by the
fact that the coolant is present in the region adjacent to the inlet for some time. At the
same time, the heat comes from the heat-generating surface by the mechanism of thermal
conductivity into the skeleton itself, which is still free from the coolant, which causes the
increase in its temperature. With the complete passage of the coolant through the porous
element, the temperature of the skeleton decreases and approaches the stationary value.
For the coolant temperature, there is no such a regularity. Thus, the proposed model
makes it possible to answer the question of the impossibility of the impact of overheating
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Fig. 1. Dynamics of the temperatures of the coolant and the porous heat-exchange element
when the heat-stressed surface is cooled for different Reynolds numbers of the inlet coolant
flow: a —20;b—-2;¢-5;1-T¢; 2T,

of the porous skeleton in the starting condition on the creation of the conditions for the
phase transition in the coolant.

The increase in porosity (Fig. 2) leads to the increase in the dimensionless and
real transition time, since in this case, the Reynolds number for the interskeleton space

decreases and in addition the transition temperature naturally increases.
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Fig. 2. Dynamics of
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Reducing the dispersion of the particles in the porous element shortens the transition
time and reduces the temperature of the coolant and the porous skeleton by increasing
the surface area of the heat transfer (Fig. 3).

The increase in the thickness of the porous layer leads to the decrease in the
temperature of the coolant and the porous skeleton with the reduction in the transition
time (Fig. 4).
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Since, for the vast majority of practically important cases, condition (22) is satisfied
and s; is substantially smaller than sy, then, for example, from (24) we can find an
approximate estimate of the dimensionless time for setting the stationary cooling regime
from

T,(6) [To(o0) ~1=4,

from where

1 {26(51 - Sz)vAB} 7 (25)

0.~ —1In
S9 (Sl -+ 2’}/AB)

S1

where 0 is predetermined relative accuracy of determination 6. (usually 6 = 0,01).

Proceeding from the assumption that
the thermal initial section in the flat
porous layer in the hydrodynamic regime s
of the ideal displacement of the coolant s
with constant velocity is formed in time 14 &
similarly to the heat transfer coefficient P
along the axial coordinate, comparison P,
with the experimental data from [19]
(Fig. 5) shows a satisfactory correlation 0 100 Re
with the calculation results according to
the proposed formula (25).

0,10}

Fig. 5. Dependence of the determination
of the dimesionless time on the Reynolds
number for the coolant: ——— is empirical
approximation [19]; e is calculation by (25)

Conclusion

The proposed model makes it possible to identify the duration of the transient
thermal regime when cooling heat-stressed surface with a porous heat exchanger without
complicated calculations and to not only select the rational macro- and micro-geometry
of the porous skeleton, but also to evaluate the effect of thermophysical characteristics on
the kinetics of the setting of the thermal stationary regime.
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MATEMATUYECKA4A MOJAEJIb ITPOI'PEBA IIJIOCKOI'O
ITOPUCTOTI'O TEIIJIOOBMEHHUKA CUCTEMBbI OXJIAXK/ITEHU
TEIIJIOBBIIEJILIOIIIEN IOBEPXHOCTHU B PE2KIME ITYCKA

B.U. Pascexux', J.A. Konosanos', C.B. Jaxun', FO.A. Byavieun',
B.II. Ilauxut?®

1Boponezkckuii rocy1apCTBeHHbIN TeXHIYeCKH yHIBEPCUTeT, I. Boponex,
Poccuiickas Pejeparimst

2BoponeskcKuii ToCyIapCTBeHHEBIH arpapHblit yEHBEPCHTET, T. BopoHex,
Poccuitickag ©enepamust

Ha ocHoBe conpskenHbIX ruapoaumHammdeckoit mogenan lapcu — Bpurkmana — @op-
uxeiimepa u TermtoBoit mogenu lllymanna ¢ TpaHUYHBIMU YCIOBUSIME BTOPOTO POAA MyTEM
reoMeTpudeckoro 2D-ocpenenns mpenjiozkKeHa MO b C COCPEIOTOYEHHBIMA TTapaMeTpaMu
U UAEHTUOUKAINY WHTErPAIbHON KUHETUKH TEeMIEPATYPHBIX MOJeH TMOPHUCTON MaTpH-
IIBI ¥ HHIOTOHOBCKOI'O TEILIOHOCHTE ST 6e3 (Pa30BhIX mepexoqoB. Moaeab aganTupPOBaHa st
OXJIAKICHNA TeINIOHAIPIKEHHON TOBEPXHOCTH C ITOMOIIBI0 TOPHCTOTO TEINTOOOMEHHHUKA, €
OJTHOPOHON TOPUCTOCTHIO U MPOHUIIAEMOCTHIO, TTOIUNHSIIONIENCST MOIUPUIIMPOBAHHOMY CO-
ornomennio Kozenn — Kapmana, B Buzne 3amadau Kormm, perenye KOTOPO# MOTYYIEHO B KO-
HEYHOM AHAJMTUIECKOM TPEICTABJIEHUHN JIJTsl CPEIHEOOHEMHBIX TEMIIEPATYD TEILIOHOCATE S
7 opucToii Mmarpuiibl. [Toka3aHa BO3MOXKHOCTD CYIECTBOBAHMS FAPMOHIYIECKOTO 3aTyXAI0-
mero Kosebanus mojeil TeMIepaTyp M OTCYTCTBHE MEPerpeBa TeIJIOHOCUTEIA B IIyCKOBOM
pexKuMe CHUCTEMBI OXJaxKiaeHund. s 6e3pa3MepHOro BpEMEHU yCTAHOBJEHHUS CTAIHOHAD-
HOTO (DYHKIIMOHUPOBAHUST TIOPUCTOTO TEIJIOOOMEHHUKA TOJYUeHA MPUOJIUKEHHAS OIEHKA,
KOPPEIUPYIOIasi ¢ W3BECTHBIMU JTAHHBIMU BBIUKCIUTENHHOTO U HATYPHOTO IKCIEPUMEHTOB

Kamouesnvie caosa: naockuti nopucmuili mensoodMentuk; menisoHanpanceHnas noeepr-
HOCTIL; 2PAHUYHDbIE YCA0BUSA 8TNOPO20 POOA; MYCKOBOU PEHCUM,; BPEMS YCTMAHOBAEHUS CINaG-

YUOHAPHO20 TMENAOB020 PEHCUMA.
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