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Optimal speed problems are among the most important problems of the theory of

controlled systems. In the qualitative theory of nonlinear speed problems one of the main

results is the Pontryagin maximum principle. For the numerical solution of nonlinear speed

problems, along with methods based on the maximum principle, methods of reducing to

auxiliary problems of optimal control using linearization, parameterization, discretization,

and other techniques are widely used. The complexity of numerical methods is determined

by the number of iterations to �nd a solution to the speed problem with a given accuracy.

A universal computational procedure that is e�ective for calculating a variety of speed

problems does not currently exist. Therefore, it is actual to develop special approaches

to reduce the amount of calculations and reduce the number of iterations. The paper

proposes a new approach based on the reduction of a nonlinear speed problem to an

auxiliary optimization problem with mixed control functions and parameters. To search

for a solution to the emerging auxiliary problem, a specially developed form of conditions

for nonlocal improvement of admissible control in the form of a �xed-point problem of

the control operator, and a constructed iterative algorithm for successive improvement of

admissible controls are used. Approbation and comparative analysis of the computational

e�ciency of the proposed �xed point approach is carried out on known models of optimal

speed problems.
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Introduction

A common approach [1, 2] to the numerical solution of optimal speed problems is
reduction by the method of penalty functionals to an auxiliary problem with a free
right end and an un�xed control time. The arising auxiliary problem by changing the
time variable can be transformed to the optimization problem for control functions and
parameters with a �xed time entering the following class of problem:

Φ(σ) = φ (x (t1) , ω) +

∫
T

F (x(t), u(t), ω, t) dt→ inf
σ∈Ω

, (1)

ẋ(t) = f (x(t), u(t), ω, t) , x(t0) = a, (2)

u(t) ∈ U, ω ∈ W,a ∈ A, t ∈ T = [t0, t1],

in which x(t) = (x1(t), . . . , xn(t)) is a state vector, u(t) = (u1(t), . . . , um(t)) is a vector of
control functions, ω = (ω1, . . . , ωl) and a = (a1, . . . , an) are vectors of control parameters.
Sets U ⊆ Rm,W ⊆ Rl, A ⊆ Rn are compact and convex. Interval T is �xed. As admissible
control functions, we consider a set V of piecewise-continuous functions on T with values
in set U , σ = (u, ω, a) is admissible control with values in set Ω = V ×W × A. Function
φ(x, ω) is continuously di�erentiable on Rn ×W, functions F (x, u, ω, t), f(x, u, ω, t) and
their partial derivatives with respect to x, u, ω are continuous in the set of arguments on set
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Rn×U×W×T . Function f(x, u, ω, t) satis�es the Lipschitz condition to x in Rn×U×W×T
with a constant L > 0: ∥f(x, u, ω, t)− f(y, u, ω, t)∥ ≤ L ∥x− y∥ . Conditions guarantee
the existence and uniqueness of the solution x(t, σ), t ∈ T of system (2) for any admissible
control σ ∈ Ω.

In [4�7] special methods for sequential improvement of control and search for extreme
controls were developed in the class of problems (1), (2) and other classes, based on
the solution, respectively, of the conditions for non-local control improvement and the
necessary optimality conditions in the form of the �xed point problems de�ned control
operators. These methods are the development and generalization of non-local methods
for optimizing controls based on non-standard approximations of functionals of problems
without residual terms of expansions in linear and linearly quadratic in the problems of
optimal control [3].

In this paper, the �xed-point approach proposed in [4�7] is concretized and tested in
comparison with the known methods for computational e�ciency with reference to known
model problems of optimal speed.

1. Conditions for Improving Control

The problem of improving control in the class of problems (1), (2) is considered in the
following general formulation: for a given control σI ∈ Ω need to �nd control σ ∈ Ω with
the condition ∆σΦ(σ

I) = Φ(σ)− Φ(σI) ≤ 0.
Pontryagin function H with conjugate variable ψ ∈ Rn and the standard conjugate

system have the form

H(ψ, x, u, ω, t) = ⟨ψ, f(x, u, ω, t)⟩ − F (x, u, ω, t),

ψ̇(t) = −Hx(ψ(t), x(t), u(t), ω, t), t ∈ T, ψ(t1) = −φx(x(t1), ω). (3)

For an admissible control σ ∈ Ω we denote ψ(t, σ), t ∈ T� the solution of the standard
conjugate system (3) for x(t) = x(t, σ) and arguments u, ω, corresponding to the control
components σ. A special increment of an arbitrary vector-valued function g(y1, . . . , yl)
with respect to ys1 , ys2 will be denoted by

∆ys1+∆ys1 ,ys2+∆ys2
g(y1, ..., yl) =

= g(y1, . . . , ys1 +∆ys1 , . . . , ys2 +∆ys2 , . . . , yl)− g(y1, . . . , yl).

In addition, we denote ∆x(t) = x(t, σ) − x(t, σI), ∆u(t) = u(t) − uI(t), ∆ω = ω − ωI ,
∆a = a− aI .

We introduce a modi�ed di�erential-algebraic conjugate system including an additional
phase variable y(t) = (y1 (t) , . . . , yn (t)) in the form

ṗ(t) = −Hx(p(t), x(t), u(t), ω, t)− r(t), (4)

⟨Hx(p(t), x(t), u(t), ω, t) + r(t), y(t)− x(t)⟩ =
∆y(t)H(p(t), x(t), u(t), ω, t) (5)

with boundary conditions
p(t1) = −φx(x(t1), ω)− q, (6)

⟨φx(x(t1), ω) + q, y(t1)− x(t1)⟩ = ∆y(t1)φ(x(t1), ω), (7)
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in which by de�nition we set r(t) = 0, q = 0 in the case of the linearity of the functions
φ, F , f with respect x (the linear problem in the state (1), (2)), and also in the case of
y(t) = x(t) with the corresponding t ∈ T .

In the linear problem in the state (1), (2), the modi�ed conjugate system (4) � (7), by
de�nition, coincides with the standard conjugate system (3).

In the nonlinear problem (1), (2), the algebraic equations (5) and (7) can always be
analytically resolved with respect to the quantities r(t) and q in the form of explicit or
conditional formulas (perhaps not uniquely).

The universal method of resolution is the following rule (using equation (5) as an
example). If there exists k ∈ {1, . . . , n}, for which yk(t) ̸= xk(t), then for i ∈ {1, . . . , n}
we set

ri(t) = 0, i ̸= k,

ri(t) =
∆y(t)H(p(t), x(t), u(t), ω, t)dt

yi(t)− xi(t)
− ⟨Hx(p(t), x(t), u(t), ω, t), y(t)− x(t)⟩

yi(t)− xi(t)
, i = k.

If for all k ∈ {1, . . . , n} we have yk(t) = xk(t), then by de�nition r(t) = 0.
An alternative simple method of explicit resolution can be applied to the polynomial

problem (1), (2) (functions φ, F , f are polynomial in the variable x), using the Taylor
formula for the polynomial. In particular, in the problem (1), (2) quadratic in the state,
we obtain (using the example of equation (5))

r(t) =
1

2
Hxx(p(t), x(t), u(t), ω, t)(y(t)− x(t)).

Thus, the di�erential-algebraic conjugate system (4) � (7) can always be reduced
(possibly not uniquely) to a di�erential conjugate system with uniquely determined
quantities r(t) and q.

For admissible controls σ ∈ Ω, σI ∈ Ω denote p(t, σI , σ), t ∈ T � solution of the
modi�ed conjugate system (4) � (7) for x(t) = x(t, σI), y(t) = x(t, σ), u(t) = uI(t),
ω = ωI . The de�nition implies the obvious equality p(t, σ, σ) = ψ(t, σ), t ∈ T .

In [6], in the class of problems (1), (2) with the help of the considered modi�cation of
the standard conjugate system, a non-standard formula for the increment of the functional
that does not contain the remainder terms of the expansions

∆σΦ(σ
I) = −∆ω{−φ(x(t1, σ), ωI) +

∫
T

H(p(t, σI , σ), x(t, σ), u(t), ωI , t)dt}−

−
⟨
p(t0, σ

I , σ),∆a
⟩
−
∫
T

∆u(t)H(p(t, σI , σ), x(t, σ), uI(t), ωI , t)dt. (8)

We denote by PY the projection operator onto set Y ⊂ Rk in the Euclidean norm

PY (z) = argmin
y∈Y

(∥y − z∥), z ∈ Rk.

For a given σI ∈ Ω consider the following system of equations for the control σ = (u, ω, a)
with the projection parameter α > 0:

u(t) = PU(u
I(t) + α(Hu(p(t, σ

I , σ), x(t, σ), uI(t), ωI , t) + su(t))), t ∈ T, (9)

∆u(t)H(p(t, σI , σ), x(t, σ), uI(t), ωI , t) =
=
⟨
Hu(p(t, σ

I , σ), x(t, σ), uI(t), ωI , t) + su(t), u(t)− uI(t)
⟩
, (10)

ω = PW (ωI + α(−φω(x(t1, σ), ω
I) +

∫
T

Hω(p(t, σ
I , σ), x(t, σ), u(t), ωI , t)dt+ sω)), (11)
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∆ω{−φ(x(t1, σ), ωI) +
∫
T

H(p(t, σI , σ), x(t, σ), u(t), ωI , t)dt} =

= ⟨ − φω(x(t1, σ), ω
I) +

∫
T

Hω(p(t, σ
I , σ), x(t, σ), u(t), ωI , t)dt+ sω, ω − ωI ⟩ , (12)

a = PA(a
I + αp(t0, σ

I , σ)), (13)

in which, by de�nition, in (10) su(t) = 0 in the case of the linearity of functions F , f
with respect to u (problem (1), (2) linear in the control function), or in case u(t) = uI(t)
at t ∈ T . Similarly, in (12), by de�nition, sω = 0 is assumed in the case of linearity of
functions F , f with respect to ω (problem (1), (2) linear in the parameter ω), as well as
for ω = ωI .

In system (9) � (13), which is bilinear in control of problem (1), (2) (function F , f
are linear in each variable u and ω) does not contain equations (10) and (12). In other
problems that are non-linear in control function u and control parameter ω in problem
(1), (2), the corresponding equations (10) and (12) can always be uniquely resolved with
respect to quantities su(t) and sω. In particular, similarly to the above rules for equation
(5) (perhaps not in a unique way).

It was shown in [7] that admissible solution σ = (u, ω, a) of system (9) � (13) provides
an improvement in the control σI ∈ Ω for any parameter α > 0 with an estimate of the
improvement of the functional:

∆σΦ(σ
I) ≤ − 1

α

∫
T

∥∥u(t)− uI(t)
∥∥2 dt− 1

α

∥∥ω − ωI
∥∥2 − 1

α

∥∥a− aI
∥∥2 .

At the same time, control improvement is guaranteed not only in a fairly small
neighbourhood of initial control σI ∈ Ω, that is, the improvement procedure under
consideration has a nonlocality property, unlike known gradient methods and other local
methods for improving control.

It is proposed to consider conditions (9) � (13) as a �xed point problem in control
space for the uniquely chosen control operator de�ned by the right-hand sides of these
conditions. This allows us to apply and modify the developed �xed point theory and
methods for realizing the conditions for improving control and constructing iterative
methods for solving optimal control problems. The developed approach of �xed points
consists of the sequential solution of problems of improving control in the form of the
constructed problems on the �xed point (9) � (13) of a uniquely determined control
operator.

2. Zermelo Problem

In [2], the known optimal speed problem (Zermelo problem) is reduced by the penalty
method to the following optimal control problem with non-�xed control time

ẋ1 (t) = cosx3 (t) , x1 (0) = 0,
ẋ2 (t) = sinx3 (t) , x2 (0) = 0,
ẋ3 (t) = u (t) , x3 (0) = 0,

t ∈ [0, t1] , |u (t)| ≤ 0, 5.

G (u, t1) = t1 + 1000
(
(x1 (t1)− 4)2 + (x2 (t1)− 3)2

)
→ min .

In the problem, we can assume that quantity t1 is bounded: t1 ≤ t̄, t̄ > 0.
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Making the replacement of time by rule

t (τ) = t0 + (t1 − t0) τ = ωτ, t0 = 0, τ ∈ [0, 1] , ω = t1 ≥ 0,
v (τ) = u (t (τ)) , y (τ) = x (t (τ)) , σ = (v, ω) ,

this problem reduces to the problem with a �xed time:
ẏ1 (τ) = ω cos y3 (τ) , y1 (0) = 0,
ẏ2 (τ) = ω sin y3 (τ) , y2 (0) = 0,
ẏ3 (τ) = ωv (τ) , y3 (0) = 0,

Φ (σ) = ω + 1000
(
(y1 (1)− 4)2 + (y2 (1)− 3)2

)
→ min,

T = [0, 1], U = {u : |u| ≤ 0, 5}, W = {ω : 0 ≤ ω ≤ t̄}.
The obtained auxiliary problem with �xed time is bilinear with respect to controllable
variables v and ω, which greatly simpli�es the structure of the �xed point problem
for control improvement. The Pontryagin function and modi�ed di�erential-algebraic
conjugate system (4) � (7) take the following form:

H (p, y, v, ω, τ) = ω (p1 cos y3 + p2 sin y3 + p3v) ,
ṗ1 (τ) = −r1(τ),
ṗ2 (τ) = −r2(τ),
ṗ3 (τ) = ωp1(τ) sin y3 (τ)− ωp2(τ) cos y3 (τ)− r3(τ),

p1 (1) = −2000 (y1 (1)− 4)− q1,
p2 (1) = −2000 (y2 (1)− 3)− q2,
p3 (1) = −q3.

In this case, the variable r(τ) = (r1 (τ) , r2 (τ) , r3 (τ)) is determined from an algebraic
equation with an additional phase variable, for which notation z(t) = (z1(t), z2(t), z3(t))
is used:

ωp1 (τ) (cos z3 (τ)− cos y3 (τ)) + ωp2 (τ) (sin z3 (τ)− sin y3 (τ)) =
= r1(τ) (z1 (τ)− y1 (τ)) + r2(τ) (z2 (τ)− y2 (τ))+

+ (−ωp1 (τ) sin y3 (τ) + ωp2 (τ) cos y3 (τ) + r3 (τ)) (z3 (τ)− y3 (τ)) .

The value of q = (q1, q2, q3) is determined from equation:

1000
(
(z1 (1)− 4)2 − (y1 (1)− 4)2 + (z2 (1)− 3)2 − (y2 (1)− 3)2

)
=

= (2000(y1(1)− 4) + q1)(z1(1)− y1(1))+
+(2000(y2(1)− 3) + q2)(z2(1)− y2(1)) + q3 (z3 (1)− y3 (1)) .

For admissible controls σ ∈ Ω, σI ∈ Ω denote p(τ, σI , σ), τ ∈ [0, 1] � solution of the
modi�ed conjugate system with y(τ) = y(τ, σI), z(τ) = y(τ, σ), v(τ) = vI(τ), ω = ωI .

System conditions for improving permissible σI ∈ Ω at α > 0 in the form of the �xed-
point problem (9) � (13) for the control operator uniquely determined by the method
indicated above, in this example takes the form:

v (τ) = PU

(
vI (τ) + αωIp3

(
τ, σI , σ

))
, τ ∈ [0, 1] ,

ω = PW (ωI + α(−1 +
∫
T

(
p1
(
τ, σI , σ

)
cos y3 (τ, σ)+

+ p2
(
τ, σI , σ

)
sin y3 (τ, σ) + p3

(
τ, σI , σ

)
v (τ)

)
dτ)).
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To calculate the obtained �xed point problem, the following iterative process for k ≥ 0
with given initial approximation σ0 = (vo, ωo) ∈ Ω is considered:

vk+1 (τ) = PU

(
vI (τ) + αωIpk3

(
τ, σI , σk

))
, τ ∈ [0, 1] ,

ωk+1 = PW

(
ωI + α

(
−1 +

∫
T

(
pk1
(
τ, σI , σk

)
cos yk3

(
τ, σk

)
+

+ pk2
(
τ, σI , σk

)
sin yk3

(
τ, σk

)
+ pk3

(
τ, σI , σk

)
vk (τ)

)
dτ

))
.

The numerical solution of the phase and conjugate Cauchy problems was carried
out by the �fth-order or sixth-order Runge�Kutta�Werner method using the Fortran
PowerStation 4.0 IMSL library. The values of controllable, phase and conjugate variables
were memorized at the nodes of �xed uniform grid Th with discretization step h > 0. In
the intervals between neighboring grid Th nodes, the value of the control function was
assumed constant and equal to the value in the left node.

If in the process of calculating the �xed point problem the condition for the �rst
improvement of control was ful�lled σI ∈ Ω:

Φ
(
σk+1

)
+ ε1 < Φ

(
σI
)
,

where ε1 ≥ 0 is a given accuracy of control improvement, a new �xed-point problem was
constructed to improve the received calculation control, and the iterative algorithm was
repeated.

If no improvement in this sense occurs, then the numerical calculation of the �xed
point problem was carried out until the condition

∥∥σk+1 − σk
∥∥
Th

≤ ε2 is satis�ed, where
ε2 > 0 is the speci�ed accuracy of the calculation of the �xed point problem. On this, the
construction and calculation of successive problems of improving control ended.

For an adequate comparison of the results of calculating the initial problem, the
proposed approach of �xed points with the methods of [2] was used to select similar
calculation conditions: h = 10−2, ε1 = 10−7, ε2 = 10−10,

∥∥σk+1 − σk
∥∥
Th

= max{|ωk+1 −
ωk|, |vk+1(t)− vk(t)|, t ∈ Th}.

Table 1

Method ∆Φ∗ N
1 7,4-1 100010
2 1,5-1 100125
3 1,8-2 100002
4 6,8-2 100019
5 1,5-1 100036
6 1,3-0 100008
7 2,2-1 100015
8 4,9-6 100012
FPM 6,8-4 12271

Table 1 shows the results of calculating
the Zermelo problem under consideration
with the proposed �xed-point method
(FPM) in comparison with the results
of calculations by computational
multimethod technologies [2], in the
notations used in this paper. Table 1
indicates ∆Φ∗ = |Φ∗ − 5, 110061|, Φ∗ is
the calculated value of the functional, N is
number of calculated phase and conjugate
Cauchy problems.

Table 2 shows the results of the
calculation of the FPM algorithm for
di�erent values of projection parameter
α > 0 and initial admissible approximation σ0. At N ≥ 200000 the calculation of the
problem was stopped.
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Table 2

α v0 ω0 ∆Φ∗ N
10−6 0,5 1 1,0-3 23055
10−6 0,5 4 1,0-3 20239
10−6 0,5 5 6,8-4 12271
10−6 0,5 6 7,7-1 200000
10−6 0,5 10 4,8 200000
10−6 0 1 1,0-3 23065
10−6 0 4 1,0-3 20245
10−6 0 5 9,1-4 14339
10−6 0 6 7,1-1 200000
10−6 0 10 Does not converge ��
10−6 � 0,5 1 1,0-3 23091
10−6 � 0,5 4 1,0-3 20219
10−6 � 0,5 5 7,9-4 14007
10−6 � 0,5 6 7,4-1 200000
10−6 � 0,5 10 4,8 200000
10−7 0,5 5 1,3-3 90695
10−5 0,5 5 Does not converge ��

These and other calculations showed that for α > 10−5 the algorithm does not
converge, but as the value of α decreases 10−6 the convergence of the algorithm slows
down signi�cantly and the number of computational problems of the Cauchy increases
accordingly. The computational e�ciency of the algorithm, estimated by the number of
computational problems of Cauchy, also depends signi�cantly on the choice of the initial
approximation. As initial ω0 approaches from the left to the conditionally optimal value
of Φ̂ = 5, 110061, the improvement in the convergence of the algorithm with respect to
computational e�ciency and accuracy is observed. When ω0 is removed to the right of the
conditionally optimal value of Φ̂, the rate of convergence decays drastically.

3. The Problem of Optimal Orientation of an Aircraft in Space

We consider the problem of optimal speed for the orientation of an aircraft in space,
which in [2] is reduced by the method of penalty functionals to the following problem:

ẋ1 (t) = x3 (t) , x1 (0) = 10,
ẋ2 (t) = x4 (t) , x2 (0) = 0,
ẋ3 (t) = −x4 (t) + u1 (t) sin u2 (t) , x3 (0) = 0,
ẋ4 (t) = x3 (t) + u1 (t) cos u2 (t) , x4 (0) = 0,

t ∈ [0, t1] , 0 ≤ u1 (t) ≤ 1, −π ≤ u2 (t) ≤ π, u = (u1, u2),

G (u, t1) = t1 + 1000
(
x21 (t1) + x22 (t1) + x23 (t1) + x24 (t1)

)
→ min .

In the problem, as in the �rst example, it can be assumed that t1 ≤ t̄, t̄ > 0. Time
replacement by rule

t (τ) = t0 + (t1 − t0) τ = ωτ, t0 = 0, τ ∈ [0, 1] , ω = t1 ≥ 0,

v (τ) = u (t (τ)) , y (τ) = x (t (τ)) , σ = (v, w) ,
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this problem reduces to a nonlinear control problem with a �xed time and mixed control
functions and parameters

ẏ1 (τ) = ωy3 (τ) , y1 (0) = 10,
ẏ2 (τ) = ωy4 (τ) (t) , y2 (0) = 0,
ẏ3 (τ) = −ωy4 (τ) + ωv1 (τ) sin v2 (τ) , y3 (0) = 0,
ẏ4 (τ) = ωy3 (τ) + ωv1 (τ) cos v2 (τ) , y4 (0) = 0,

Φ (σ) = ω + 1000
(
y21 (1) + y22 (1) + y23 (1) + y24 (1)

)
→ min,

T = [0, 1], U = {u = (u1, u2) : 0 ≤ u1 ≤ 1, −π ≤ u2 ≤ π},W = {ω : 0 ≤ ω ≤ t̄}.

The Pontryagin function in the transformed problem looks like this:

H (p, y, v, ω, τ) = ω ((p1 + p4) y3 + (p2 − p3) y4 + (p3 sin v2 + p4 cos v2) v1) .

In view of the linearity of the Pontryagin function with respect to variable y(τ), the
modi�ed di�erential-algebraic conjugate system in accordance with (4) � (7) takes the
form: 

ṗ1 (τ) = 0, p1 (1) = −2000y1 (1)− q1,
ṗ2 (τ) = 0, p2 (1) = −2000y2 (1)− q2,
ṗ3 (τ) = −ω (p1(τ) + p4(τ)) , p3 (1) = −2000y3 (1)− q3,
ṗ4 (τ) = −ω (p2(τ)− p3(τ)) , p4 (1) = −2000y4 (1)− q4,

in which the value of q = (q1, q2, q3, q4) is determined from the equation:

1000 (z21 (1)− y21 (1) + z22 (1)− y22 (1) + z23 (1)− y23 (1) + z24 (1)− y24 (1)) =

= (2000y1 (1) + q1) (z1 (1)− y1 (1)) + (2000y2 (1) + q2) (z2 (1)− y2 (1))+

+ (2000y3 (1) + q3) (z3 (1)− y3 (1)) + (2000y4 (1) + q4) (z4 (1)− y4 (1)) .

For admissible controls σ ∈ Ω, σI ∈ Ω we denote p(τ, σI , σ), τ ∈ [0, 1] � the solution of the
modi�ed conjugate system for y(τ) = y(τ, σI), z(τ) = y(τ, σ), v(τ) = vI(τ), ω = ωI .

The system of conditions for improving admissible σI ∈ Ω for α > 0 in the form of the
�xed point problem according to (9) � (13) takes the form:

(v1 (τ) , v2 (τ)) =

= PU

(
vI1 (τ) + α(ωI(p3

(
τ, σI , σ

)
sin vI2 (τ) + p4

(
τ, σI , σ

)
cos vI2 (τ)) + s1(τ)),

vI2 (τ) + α(ωIvI1 (τ) (p3
(
τ, σI , σ

)
cos vI2 (τ)− p4

(
τ, σI , σ

)
sin vI2 (τ)) + s2(τ))), τ ∈ [0, 1] ,

ω = PW

(
ωI + α

(
− 1 +

∫
T

((
p1
(
τ, σI , σ

)
+ p4

(
τ, σI , σ

))
y3 (τ, σ) +

(
p2
(
τ, σI , σ

)
−

−p3
(
τ, σI , σ

))
y4 (τ, σ) + +v1 (τ)

(
p3
(
τ, σI , σ

)
sin v2 (τ) + p4

(
τ, σI , σ

)
cos v2 (τ)

))
dτ

))
,

in which value of s(τ) = (s1(τ), s2(τ)) is determined from the algebraic equation:

ωIv1 (τ)
(
p3
(
τ, σI , σ

)
sin v2 (τ) + p4

(
τ, σI , σ

)
cos v2 (τ)

)
− ωIvI1 (τ)

(
p3
(
τ, σI , σ

)
sin vI2 (τ)+

+p4
(
τ, σI , σ

)
cos vI2 (τ)

)
= (ωI(p3(τ, σ

I , σ) sin vI2(τ) + p4(τ, σ
I , σ) cos vI2(τ)) + s1(τ))(v1(τ)−

−vI1(τ)) + (ωIvI1(τ)(p3(τ, σ
I , σ) cos vI2(τ)− p4(τ, σ

I , σ) sin vI2(τ)) + s2(τ))(v2(τ)− vI2(τ)).
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We choose the following method of unambiguous resolution of s(τ) = (s1(τ), s2(τ))
from the algebraic equation:

1) if v1 (τ) ̸= vI1 (τ), then
s2 (τ) = 0,

s1 (τ) =
ωIv1 (τ)

(
p3
(
τ, σI , σ

)
sin v2 (τ) + p4

(
τ, σI , σ

)
cos v2 (τ)

)
v1 (τ)− vI1 (τ)

−

−
ωIvI1 (τ)

(
p3
(
τ, σI , σ

)
sin vI2 (τ) + p4

(
τ, σI , σ

)
cos vI2 (τ)

)
v1 (τ)− vI1 (τ)

−

−
ωIvI1 (τ)

(
p3
(
τ, σI , σ

)
cos vI2 (τ)− p4

(
τ, σI , σ

)
sin vI2 (τ)

) (
v2 (τ)− vI2 (τ)

)
v1 (τ)− vI1 (τ)

−

−ωI
(
p3
(
τ, σI , σ

)
sin vI2 (τ) + p4

(
τ, σI , σ

)
cos vI2 (τ)

)
;

2) if v1 (τ) = vI1 (τ), then
2.1) if v2 (τ) ̸= vI2 (τ), then

s1 (τ) = 0,

s2 (τ) =
ωIv1 (τ)

(
p3
(
τ, σI , σ

)
sin v2 (τ) + p4

(
τ, σI , σ

)
cos v2 (τ)

)
v2 (τ)− vI2 (τ)

−

−
ωIvI1 (τ)

(
p3
(
τ, σI , σ

)
sin vI2 (τ) + p4

(
τ, σI , σ

)
cos vI2 (τ)

)
v2 (τ)− vI2 (τ)

−

−ωIvI1 (τ)
(
p3
(
τ, σI , σ

)
cos vI2 (τ)− p4

(
τ, σI , σ

)
sin vI2 (τ)

)
;

2.2) if v2 (τ) = vI2 (τ), then

s1 (τ) = 0, s2 (τ) = 0.

To solve the above �xed point problem, similarly to the previous example, we used an
explicit iterative algorithm of simple iterations with the same computational features of
the implementation:

(vk+1
1 (τ) , vk+1

2 (τ)) =
= PU

(
vI1 (τ) + α(ωI(p3

(
τ, σI , σk

)
sin vI2 (τ) + p4

(
τ, σI , σk

)
cos vI2 (τ)) + sk1(τ)),

vI2 (τ) + α(ωIvI1 (τ) (p3
(
τ, σI , σk

)
cos vI2 (τ)− p4

(
τ, σI , σk

)
sin vI2 (τ)) + sk2(τ))), τ ∈ [0, 1] ,

ωk+1 = PW

ωI + α

−1 +

∫
T

((
p1
(
τ, σI , σk

)
+ p4

(
τ, σI , σk

))
y3
(
τ, σk

)
+

+
(
p2
(
τ, σI , σk

)
− p3

(
τ, σI , σk

))
y4
(
τ, σk

)
+

+ vk1 (τ)
(
p3
(
τ, σI , σk

)
sin vk2 (τ) + p4

(
τ, σI , σk

)
cos vk2 (τ)

))
dτ

))
,

in which value of sk(τ) = (sk1(τ), s
k
2(τ)) is determined from the corresponding algebraic

equation analogous to the single-valued rule for quantity s(τ). The operation of projection
PU(z) on set U = {u = (u1, u2) : 0 ≤ u1 ≤ 1, −π ≤ u2 ≤ π} is realized analytically in
the form of a simple conditional formula.
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Table 3

Method ∆Φ∗ N
1 7,0-1 100002
2 7,1-1 103191
3 2,4-2 100146
4 5,3+1 100069
5 6,7-1 100159
6 6,8+2 4978
7 6,6-1 100003
8 Does not converge ��

Table 3 shows the data for calculating
the model problem developed in [2]
by multimethod iterative technologies for
which the initial initial approximations
are not given in [2] for a complete
adequate comparison of the approaches
considered with the proposed �xed point
algorithm. Table 3 uses notation ∆Φ∗ =
|Φ∗ − 10, 285456|, Φ∗ is the calculated value
of the functional, N is a number of
calculated phase and conjugate Cauchy
problems.

For comparison, Table 4 shows the results of calculating the problem under
consideration by the �xed point method used for α = 10−6 and various initial
approximations. At N ≥ 400000 the calculation of the problem was stopped.

Table 4

v10 v20 ω0 ∆Φ∗ N
1 1 1 Does not converge ��
1 1 5 1,4-1 12181
1 1 10 3,9-3 11805
1 1 11 7,0-1 125925
1 1 15 4,7 137377
0,5 � 1 1 1,4-1 12713
0,5 � 1 5 1,4-1 12201
0,5 � 1 10 3,9-3 11583
0,5 � 1 11 6,7-1 206623
0,5 � 1 15 4,5 400000
0,5 1 1 Does not converge ��
0,5 1 5 1,4-1 12207
0,5 1 10 5,1-3 11117
0,5 1 11 7,0-1 177871
0,5 1 15 4,5 400000

The analysis of these and other calculations performed by the proposed �xed point
algorithm demonstrates similarities to the �rst model example of the dependence of
the convergence of the algorithm on the projection parameter α > 0 and the initial
approximations.

Conclusion

The computational experiments carried out on model speed problems demonstrate the
computational and qualitative e�ciency of the proposed �xed point approach, acceptable
for practice, in comparison with known methods [2]. The developed nonlocal approach to
the search for approximate-optimal solutions has a rather wide range of convergence in
the initial approximation and is characterized by the convenience and simplicity of the
experimental adjustment of the scalar projection parameter that regulates the quality and
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speed of convergence of the iterative process under consideration. Approximately-optimal
solutions of optimal speed problems obtained with the help of the proposed approach can
be considered as acceptable initial approximations for further iterative re�nement by other
methods. These features of the proposed approach are important factors for increasing the
e�ciency and future development of nonlocal methods for solving optimal speed problems.
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of Education and Science of the Russian Federation, project 1.5049.2017/BP; Russian
Foundation for Basic Research, project 18-41-030005.
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ÎÁ ÎÄÍÎÌ ÏÎÄÕÎÄÅ Ê ×ÈÑËÅÍÍÎÌÓ ÐÅØÅÍÈÞ
ÍÅËÈÍÅÉÍÛÕ ÇÀÄÀ× ÎÏÒÈÌÀËÜÍÎÃÎ ÁÛÑÒÐÎÄÅÉÑÒÂÈß

À.Ñ. Áóëäàåâ1, È.Ä. Áóðëàêîâ1

1Áóðÿòñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ã. Óëàí-Óäý, Ðîññèéñêàÿ Ôåäåðàöèÿ

Çàäà÷è îïòèìàëüíîãî áûñòðîäåéñòâèÿ îòíîñÿòñÿ ê âàæíåéøèì çàäà÷àì òåîðèè

óïðàâëÿåìûõ ñèñòåì. Â êà÷åñòâåííîé òåîðèè íåëèíåéíûõ çàäà÷ áûñòðîäåéñòâèÿ îäíèì

èç îñíîâíûõ ðåçóëüòàòîâ ÿâëÿåòñÿ ïðèíöèï ìàêñèìóìà Ïîíòðÿãèíà. Äëÿ ÷èñëåííîãî

ðåøåíèÿ íåëèíåéíûõ çàäà÷ áûñòðîäåéñòâèÿ, íàðÿäó ñ ìåòîäàìè, îñíîâàííûìè íà ïðèí-

öèïå ìàêñèìóìà, øèðîêî ïðèìåíÿþò ñïîñîáû ñâåäåíèÿ ê âñïîìîãàòåëüíûì çàäà÷àì
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îïòèìàëüíîãî óïðàâëåíèÿ ñ ïîìîùüþ ïðîöåäóð ëèíåàðèçàöèè, ïàðàìåòðèçàöèè, äèñ-

êðåòèçàöèè è äðóãèõ ïðèåìîâ. Òðóäîåìêîñòü ÷èñëåííûõ ìåòîäîâ îïðåäåëÿåòñÿ êîëè-

÷åñòâîì èòåðàöèé äëÿ íàõîæäåíèÿ ðåøåíèÿ çàäà÷è áûñòðîäåéñòâèÿ ñ çàäàííîé òî÷íî-

ñòüþ. Óíèâåðñàëüíîé âû÷èñëèòåëüíîé ïðîöåäóðû, ÿâëÿþùåéñÿ ýôôåêòèâíîé äëÿ ðàñ-

÷åòà ðàçíîîáðàçíûõ çàäà÷ áûñòðîäåéñòâèÿ, â íàñòîÿùåå âðåìÿ íå ñóùåñòâóåò. Ïîýòî-

ìó àêòóàëüíûì ÿâëÿåòñÿ ðàçðàáîòêà ñïåöèàëüíûõ ïîäõîäîâ, ïîçâîëÿþùèõ óìåíüøàòü

îáúåì âû÷èñëåíèé è ñîêðàùàòü ÷èñëî èòåðàöèé. Â ðàáîòå ïðåäëàãàåòñÿ íîâûé ïîä-

õîä, îñíîâûâàþùèéñÿ íà ñâåäåíèè íåëèíåéíîé çàäà÷è îïòèìàëüíîãî áûñòðîäåéñòâèÿ

ê âñïîìîãàòåëüíîé çàäà÷å îïòèìèçàöèè ñî ñìåøàííûìè óïðàâëÿþùèìè ôóíêöèÿìè è

ïàðàìåòðàìè. Äëÿ ïîèñêà ðåøåíèÿ âîçíèêàþùåé âñïîìîãàòåëüíîé çàäà÷è èñïîëüçóþò-

ñÿ ñïåöèàëüíàÿ ðàçðàáîòàííàÿ ôîðìà óñëîâèé íåëîêàëüíîãî óëó÷øåíèÿ äîïóñòèìîãî

óïðàâëåíèÿ â âèäå çàäà÷è î íåïîäâèæíîé òî÷êå îïåðàòîðà óïðàâëåíèÿ è êîíñòðóèðóå-

ìûé èòåðàöèîííûé àëãîðèòì ïîñëåäîâàòåëüíîãî óëó÷øåíèÿ äîïóñòèìûõ óïðàâëåíèé.

Ïðîâîäèòñÿ àïðîáàöèÿ è ñðàâíèòåëüíûé àíàëèç âû÷èñëèòåëüíîé ýôôåêòèâíîñòè ïðåä-

ëàãàåìîãî ïîäõîäà íåïîäâèæíûõ òî÷åê íà èçâåñòíûõ ìîäåëüíûõ çàäà÷àõ îïòèìàëüíîãî

áûñòðîäåéñòâèÿ.

Êëþ÷åâûå ñëîâà: çàäà÷à îïòèìàëüíîãî áûñòðîäåéñòâèÿ; óñëîâèÿ óëó÷øåíèÿ

óïðàâëåíèÿ; çàäà÷à î íåïîäâèæíîé òî÷êå.
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