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Optimal speed problems are among the most important problems of the theory of
controlled systems. In the qualitative theory of nonlinear speed problems one of the main
results is the Pontryagin maximum principle. For the numerical solution of nonlinear speed
problems, along with methods based on the maximum principle, methods of reducing to
auxiliary problems of optimal control using linearization, parameterization, discretization,
and other techniques are widely used. The complexity of numerical methods is determined
by the number of iterations to find a solution to the speed problem with a given accuracy.
A universal computational procedure that is effective for calculating a variety of speed
problems does not currently exist. Therefore, it is actual to develop special approaches
to reduce the amount of calculations and reduce the number of iterations. The paper
proposes a new approach based on the reduction of a nonlinear speed problem to an
auxiliary optimization problem with mixed control functions and parameters. To search
for a solution to the emerging auxiliary problem, a specially developed form of conditions
for nonlocal improvement of admissible control in the form of a fixed-point problem of
the control operator, and a constructed iterative algorithm for successive improvement of
admissible controls are used. Approbation and comparative analysis of the computational
efficiency of the proposed fixed point approach is carried out on known models of optimal
speed problems.

Keywords: optimal speed problem; conditions for improving control; fixed point problem.

Introduction

A common approach [1,2] to the numerical solution of optimal speed problems is
reduction by the method of penalty functionals to an auxiliary problem with a free
right end and an unfixed control time. The arising auxiliary problem by changing the
time variable can be transformed to the optimization problem for control functions and
parameters with a fixed time entering the following class of problem:

O(o) =p(z(t),w)+ /F (x(t),u(t),w,t)dt — ;Ielgf], (1)
T
(t) = f(x(t),u(t),w,t), z(ty) = a, (2)
u(t) e U,weW,ae A, teT =ty 1],
in which z(t) = (z1(t),...,z,(t)) is a state vector, u(t) = (u1(t),...,un(t)) is a vector of
control functions, w = (wy,...,w;) and a = (a4, ..., a,) are vectors of control parameters.

Sets U C R™, W C R!, A C R™ are compact and convex. Interval T is fixed. As admissible
control functions, we consider a set V' of piecewise-continuous functions on 7" with values
in set U, 0 = (u,w, a) is admissible control with values in set 2 =V x W x A. Function
o(z,w) is continuously differentiable on R™ x W, functions F(z,u,w,t), f(z,u,w,t) and
their partial derivatives with respect to z, u, w are continuous in the set of arguments on set

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 55
u nporpammupoBanues (BectunkFOYpIl'Y MMII). 2018, T. 11, Ne 4. C. 55-66



A.S. Buldaev, 1.D. Burlakov

R"xUxW xT. Function f(z,u,w,t) satisfies the Lipschitz condition to z in R"xU xW xT
with a constant L > 0: ||f(z,u,w,t) — f(y,u,w,t)|| < L|z —y|l. Conditions guarantee
the existence and uniqueness of the solution z(¢,0), t € T of system (2) for any admissible
control o € €.

In [4-7| special methods for sequential improvement of control and search for extreme
controls were developed in the class of problems (1), (2) and other classes, based on
the solution, respectively, of the conditions for non-local control improvement and the
necessary optimality conditions in the form of the fixed point problems defined control
operators. These methods are the development and generalization of non-local methods
for optimizing controls based on non-standard approximations of functionals of problems
without residual terms of expansions in linear and linearly quadratic in the problems of
optimal control [3].

In this paper, the fixed-point approach proposed in [4-7] is concretized and tested in
comparison with the known methods for computational efficiency with reference to known
model problems of optimal speed.

1. Conditions for Improving Control

The problem of improving control in the class of problems (1), (2) is considered in the
following general formulation: for a given control o! € € need to find control o € Q with
the condition A, ®(o!) = ®(0) — &(o!) <0.

Pontryagin function H with conjugate variable v» € R™ and the standard conjugate
system have the form

HW,z,u,w,t) = (¥, f(z,u,w,t)) — F(z,u,w,t),
1/1(?5) = —Hx(w(t),x(t),u(t),w,t), le T7 1/}<t1) = _pr(x(tl)ﬂw)' (3)

For an admissible control o € 2 we denote (¢, ), t € T— the solution of the standard
conjugate system (3) for z(t) = z(¢,0) and arguments u, w, corresponding to the control
components o. A special increment of an arbitrary vector-valued function g(yi,...,u)
with respect to ys,, ys, Will be denoted by

Aysl +Aysl,y52+Ay329<yla ey yl) ==
= g<y1a ey Ysy +Aysp <5 Yso +AySQa s 7yl) _g(yla' .. 7yl)'

In addition, we denote Az(t) = z(t,0) — z(t,0"), Au(t) = u(t) — u'(t), Aw = w — W,
Aa=a—al.
We introduce a modified differential-algebraic conjugate system including an additional

phase variable y(t) = (y1 (t),...,yn (t)) in the form

(Ho(p(t), x(t), u(t),w, t) + r(t),y(t) — z(t)) =
Ay(t)H(p(t)7x(t)vu(t)7w7t) (5)
with boundary conditions
p(tr) = —¢pa(z(t1),w) — ¢, (6)
<(70:c(x(tl)> w) +q, y(tl) - l‘(t1)> = Ay(h)gp(m(tl)a UJ), (7)
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in which by definition we set r(t) = 0, ¢ = 0 in the case of the linearity of the functions
¢, F, f with respect = (the linear problem in the state (1), (2)), and also in the case of
y(t) = z(t) with the corresponding t € T'.

In the linear problem in the state (1), (2), the modified conjugate system (4) — (7), by
definition, coincides with the standard conjugate system (3).

In the nonlinear problem (1), (2), the algebraic equations (5) and (7) can always be
analytically resolved with respect to the quantities r(¢) and ¢ in the form of explicit or
conditional formulas (perhaps not uniquely).

The universal method of resolution is the following rule (using equation (5) as an
example). If there exists k € {1,...,n}, for which yx(t) # zx(t), then for i € {1,...,n}
we set

T’z(t) = 072 7é k?,
T"<t) _ Ay(t)H(p(t),x(t),u(t),w,t)dt i <Hx(p(t),x(t),u(t),w,t),y(t) - I(t»
' yi(t) — zi(t) yi(t) — xi(t)

If for all k € {1,...,n} we have yx(t) = x(t), then by definition r(t) = 0.

An alternative simple method of explicit resolution can be applied to the polynomial
problem (1), (2) (functions ¢, F', f are polynomial in the variable x), using the Taylor
formula for the polynomial. In particular, in the problem (1), (2) quadratic in the state,
we obtain (using the example of equation (5))

1

T‘(t) = éHm(p(t),x(t),u(t),w,t)(y(t) - ZI}(t))

Thus, the differential-algebraic conjugate system (4) — (7) can always be reduced
(possibly not uniquely) to a differential conjugate system with uniquely determined
quantities r(¢) and g.

For admissible controls o € €, of € Q denote p(t,0’,0), t € T — solution of the
modified conjugate system (4) — (7) for z(t) = z(t,0?), y(t) = z(t,0), u(t) = ul(t),
w = w!. The definition implies the obvious equality p(t,0,0) = ¥(t,0), t € T.

In [6], in the class of problems (1), (2) with the help of the considered modification of
the standard conjugate system, a non-standard formula for the increment of the functional
that does not contain the remainder terms of the expansions

A,P(0h) = —A{—p(z(t1,0),w!) +!H(p(t,af,a),x(t,a),u(t),wf,t)dt}—
~(plto, ", ), 8a) — [ Ao Hip(t, ') (1, 0), (1), 1) (8)

i=k.

We denote by Py the projection operator onto set Y C R* in the Euclidean norm

Py (z) = argmin(|ly — z||), z € R".
yey

For a given o! € 2 consider the following system of equations for the control o = (u,w,a)
with the projection parameter a > 0:

u(t) = Py(u' (t) + a(H,(p(t, o', 0),2(t, o), u' (1), w' 1) + (1)), teT, (9)
Au(t)H(p(t>UI7U)7 ( ) (t) wlvt) = (10)

= (H,(p(t, o', 0), x(t o), ul(t),w! t) + s"(t), ut) — u' (1)),
w = Py (w + al—p,(z(t1,0),w!) + fH (t,ol,0), x(t, o), u(t),w! t)dt + s*)), (11)
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Ad—p(x(ty, o), w!) + fH(p(t,01,0),x(t,a),u(t),wl,t)dt} =

— (= pu(a(ts, o), W) —|—!Hw(jz;(t,JI,a),x(t,a),u(t),wl,t)dt—|—s“’,w—wl), (12)

a = PA(aI + ap(to, ol, 7)), (13)

in which, by definition, in (10) s*(¢) = 0 in the case of the linearity of functions F, f
with respect to u (problem (1), (2) linear in the control function), or in case u(t) = u!(t)
at t € T. Similarly, in (12), by definition, s* = 0 is assumed in the case of linearity of
functions F', f with respect to w (problem (1), (2) linear in the parameter w), as well as
for w = w'.

In system (9) — (13), which is bilinear in control of problem (1), (2) (function F, f
are linear in each variable u and w) does not contain equations (10) and (12). In other
problems that are non-linear in control function v and control parameter w in problem
(1), (2), the corresponding equations (10) and (12) can always be uniquely resolved with
respect to quantities s*(¢) and s*. In particular, similarly to the above rules for equation
(5) (perhaps not in a unique way).

It was shown in [7] that admissible solution ¢ = (u,w, a) of system (9) — (13) provides
an improvement in the control ¢! € Q for any parameter a > 0 with an estimate of the
improvement of the functional:

1 1 1
800(0") < [ [t~ Ot = % flo = = Xl ]

At the same time, control improvement is guaranteed not only in a fairly small
neighbourhood of initial control ¢/ € €, that is, the improvement procedure under
consideration has a nonlocality property, unlike known gradient methods and other local
methods for improving control.

It is proposed to consider conditions (9) — (13) as a fixed point problem in control
space for the uniquely chosen control operator defined by the right-hand sides of these
conditions. This allows us to apply and modify the developed fixed point theory and
methods for realizing the conditions for improving control and constructing iterative
methods for solving optimal control problems. The developed approach of fixed points
consists of the sequential solution of problems of improving control in the form of the
constructed problems on the fixed point (9) — (13) of a uniquely determined control
operator.

2. Zermelo Problem

In [2], the known optimal speed problem (Zermelo problem) is reduced by the penalty
method to the following optimal control problem with non-fixed control time
iy (t) = cosas(t), x1(0)=0,
dp (1) =sinzs (t), x2(0) =0,
a3 (1) = u(t), 3 (0) =0,
G (U,, tl) = t; + 1000 ((ZEl (tl) — 4)2 + (ZEQ (tl) — 3)2) — min.

In the problem, we can assume that quantity ¢; is bounded: t; <1, ¢ > 0.
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Making the replacement of time by rule

t()—to—f—(tl—t())T wT, tOZO, TG[O,]_], w:tlzo,

v(r) =u(r)), y()=z@(r)), o=(vw),

this problem reduces to the problem with a fixed time:

U1 (1) =wcosys (1), 1 (0) =0,
U2 (1) = wsinys (1), y2(0) =0,
Y3 (1) = wo (1), y3 (0) =0,
® (o) = w+ 1000 ((y1 (1) — 4 + (g2 (1) — 3)2) — min

T=[0,1, U={u:lu/<0,5}, W={w:0<w<t}.

The obtained auxiliary problem with fixed time is bilinear with respect to controllable
variables v and w, which greatly simplifies the structure of the fixed point problem
for control improvement. The Pontryagin function and modified differential-algebraic
conjugate system (4) — (7) take the following form:

H (p,y,v,w,T) = w(p1 cosys + pasinys + psv),

pr(7) = —ni(7),
P2 (7) = —7a(7),
ps3 (1) = wpi(7) sinys (1) — wps(7) cosysz (1) — r3(7),

(7)
p2(1) —2000 (y2 (1) = 3) — g2,
ps3(l) =
In this case, the variable r(7) = (ry (1), r2(7), 73(7)) is determined from an algebraic

equation with an additional phase Varlable, for which notation z(t) = (z1(¢), 22(t), 23(t))
is used:

wpy (T) (cos zg (1) — cosys (7)) + wps (7) (sin z3 (7) — sinys (7)) =
=71(7) (21 (1) =y (7)) +r2(7) (22 (T) — 92 (7)) +
+ (—wp1 (7) sinys (7 )+wP2(T)COSy3(T)+7“3(T))(23(7)—1/3(7))-

The value of ¢ = (1, g2, ¢3) is determined from equation:

1000 ((21 (1) = 4)* = (41 (1) = 4)° + (22 (1) = 3)* = (12 (1) = 3)%) =
= (2000(y1(1) —4) + q1)(21(1) — v (1)) +
+(2000(y2(1) = 3) + g2)(22(1) — y2(1)) + g3 (23 (1) —y3 (1))

For admissible controls o € Q, ¢! € Q denote p(7,0!,0), 7 € [0,1] - solution of the
modified conjugate system with y(7) = y(7,07), 2(7) = y(7, ), v(7) = v (1), w = W'

System conditions for improving permissible o/ € Q at « > 0 in the form of the fixed-
point problem (9) — (13) for the control operator uniquely determined by the method
indicated above, in this example takes the form:

v (1) =Py (v (1) + aw'ps (1,0%,0)), 7€0,1],
w = Py(w +a(-1 —i—! (p1 (7,0%,0) cosys (T,0) +
+ o (T, ol O’) sinys (7,0) + ps (7‘, ol 0) v (T)) dr)).
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To calculate the obtained fixed point problem, the following iterative process for £k > 0
with given initial approximation 0% = (v°,w°) € Q is considered:

R (1) = Py (v! (1) 4+ aw'ph (7,07, ak)) , T€l0,1],
= Py (wl +a (—1 + [ (o} (7,07, 0%) cosyf (,0%) +
T
+ph (T, ol ak) sin 4 (T, ak) + Pk (T, ol ak) L (T)) dT)) )

The numerical solution of the phase and conjugate Cauchy problems was carried
out by the fifth-order or sixth-order Runge-Kutta-Werner method using the Fortran
PowerStation 4.0 IMSL library. The values of controllable, phase and conjugate variables
were memorized at the nodes of fixed uniform grid 7j, with discretization step A > 0. In
the intervals between neighboring grid 7} nodes, the value of the control function was
assumed constant and equal to the value in the left node.

If in the process of calculating the fixed point problem the condition for the first
improvement of control was fulfilled 0! € Q:

® (akH) +e<® (O'I) )

where €1 > 0 is a given accuracy of control improvement, a new fixed-point problem was
constructed to improve the received calculation control, and the iterative algorithm was
repeated.

If no improvement in this sense occurs, then the numerical calculation of the fixed
point problem was carried out until the condition [o**! — ’“H < &, is satisfied, where
g9 > 0 is the specified accuracy of the calculation of the fixed pomt problem. On this, the
construction and calculation of successive problems of improving control ended.

For an adequate comparison of the results of calculating the initial problem, the
proposed approach of fixed points with the methods of [2| was used to select similar
calculation conditions: h = 1072, &1 = 1077, g5 = 10710, [|g*+! — akHTh = max{|wkt! —
WE[ [oRT(E) — ok ()|, t € Ty}

Table 1 shows the results of calculating Table 1
the Zermelo problem under consideration

with the proposed fixed-point method Method | A®* | N
(FPM) in comparison with the results 1 7,4-1 1 100010
of  calculations by computational 2 1,5-1 | 100125
multimethod technologies [2], in the 3 1,8-2 | 100002
notations used in this paper. Table 1 4 6,8-2 | 100019
indicates A®* = |®* — 5 110061|, ®* is 5 1,5-1 | 100036
the calculated value of the functional, NV is 6 1,3-0 | 100008
number of calculated phase and conjugate 7 2,2-1 | 100015
Cauchy problems. 8 4,9-6 | 100012
Table 2 shows the results of the FPM 6,8-4 | 12271

calculation of the FPM algorithm for

different values of projection parameter

a > 0 and initial admissible approximation ¢°. At N > 200000 the calculation of the
problem was stopped.
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Table 2
o VY w? AD* N
1070 0,5 1 1,0-3 23055
1070 0,5 4 1,0-3 20239
10°° 0.5 5 6,84 12271
10-° 0,5 6 7,7-1 200000
10-° 0,5 10 4.8 200000
1076 0 1 1,0-3 23065
1076 0 1,0-3 20245
1070 0 5) 9,1-4 14339
106 0 6 7,1-1 200000
10°° 0 10 Does not converge | ——
10-° -0, 1 1,0-3 23091
1076 -0,5 4 1,0-3 20219
1076 -0,5 ) 7,9-4 14007
107 -0,5 6 7,4-1 200000
10 - 0,5 10 4.8 200000
107 0,5 5) 1,3-3 90695
107° 0,5 5 Does not converge | ——

These and other calculations showed that for ¢ > 1075 the algorithm does not
converge, but as the value of a decreases 107% the convergence of the algorithm slows
down significantly and the number of computational problems of the Cauchy increases
accordingly. The computational efficiency of the algorithm, estimated by the number of
computational problems of Cauchy, also depends significantly on the choice of the initial
approximation. As initial w® approaches from the left to the conditionally optimal value
of = 5,110061, the improvement in the convergence of the algorithm with respect to
computational efficiency and accuracy is observed. When w® is removed to the right of the
conditionally optimal value of <i>, the rate of convergence decays drastically.

3. The Problem of Optimal Orientation of an Aircraft in Space

We consider the problem of optimal speed for the orientation of an aircraft in space,
which in [2] is reduced by the method of penalty functionals to the following problem:
$1 (t) = T3 (t) y T (O) = 10,
.j]gt :.134<t, IQ(O):O,
' +uq () sinug (1), x3(0) =0,
uy (t)cosug (t), x4(0) =0,
te0,t], 0<wu(t) <
G (u,t1) = t1 + 1000 (27 (t1) + 23 (t1) + 23 (t1) + 27 (t1)) — min.
In the problem, as in the first example, it can be assumed that ¢t; < ¢, £ > 0. Time
replacement by rule
t(7‘)=t0+(t1—t0)7:w7, tOZO, TE[O,].], w:tlzo,
v(r)=u(t(r), y@)=xz(t(r), o=(,w),
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this problem reduces to a nonlinear control problem with a fixed time and mixed control
functions and parameters

U1 (1) = wys (1), y1 (0) = 10,
92(7): 4 (7) (1) y2(0) =0,
Ys (1) = — y4(7)+wvl( )sinws (1), y3 (0) =0,

4 (7) = wys (1) + wvy (T) cos vy (T) y4 (0) =0,

® (o) = w+1000 (y7 (1) + 5 (1) + w3 (1) 4+ v (1)) — min,
T=[0,1,U={u=(u,ug) : 0<uy <1, —m<up<7w},W=H{w:0<w<t}

The Pontryagin function in the transformed problem looks like this:

H(p,y,v,w,7) =w ((p1 + pa) ys + (P2 — p3) ya + (p3sinvs + pycosva) vy) .

In view of the linearity of the Pontryagin function with respect to variable y(7), the
modified differential-algebraic conjugate system in accordance with (4) — (7) takes the

form:
1 (1) = p1 (1) = —2000y; (1) — q1,
P2 (T) = p2 (1) = —2000y; (1) — go,
3 (1) = —w (pl( ) +pa(7)) ps (1) = —2000y3 (1) — g3,
Pa(7) = —w (pa(7) —p3(7)),  pa(1l) = —2000y4 (1) — qu,

in which the value of ¢ = (1, 2, ¢3, @) is determined from the equation:

Ga)
1000 (27 (1) =y (1) + 25 (1) =93 (1) + 25 (1) =93 (1) + 25 (1) =y (1)) =
= (200091 (1) + q1) (21 (1) = w1 (1)) + (20002 (1) + g2) (22 (1) — w2 (1)) +
+(2000ys (1) + gs) (25 (1) = 3 (1)) + (200094 (1) + ga) (24 (1) = w4 (1))

For admissible controls o € Q, o € Q we denote p(7, 07, ), 7 € [0, 1] — the solution of the
modified conjugate system for y(7) = y(7,0!), 2(7) = y(7,0), v(7) = V! (7), w = W
The system of conditions for improving admissible o/ € Q for o > 0 in the form of the

fixed point problem according to (9) — (13) takes the form:

(v1 (1), 02 (7)) =
=Py (vl (1) + a(w!(ps (7', ol 0) sinvl (1) + py (7’ ol a) cosvh (1)) + s1(7)),
vl (1) + a(wlvl (1) (ps (7‘, 01,0) cos vl (1) — p4 (7‘, 01,0) sinvl (7)) + s2(7))), 7 € [0,1],

w:PW<wI+a<—1—|—/((p1 (7’,0[,0) + P4 (7’,0[,0)) ys (1,0) + (pg (7’,0[,0)—

T

—p3 (T, ol, 0)) Yy (1,0) + +v1 (1) (p3 (7’, ol, 0) sinwy (T) + p4 (T, ol, O’) COS Uy (T))) dT)) ,

in which value of s(7) = (s1(7), s2(7)) is determined from the algebraic equation:

wlvy (1) (ps (1,07, 0) sinvy (1) + pa (7,07, 0) cosva (7)) — wv! (7) (ps (7,07, 0) sinvl (1) +

+pa (7,07, 0) cosvy (7)) = (W' (ps(7, 07, o) sin vy (7) + pa(7, 0", o) cos vy (7)) + s1(7)) (vi(7)—
—0{(7)) + (W'{(7)(ps(7, 07, 0) cos v} (7) — pa(T, 07, 0) sin v (7)) + 52(7)) (va(7) — v3(7)).
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We choose the following method of unambiguous resolution of s(7) = (s1(7), s2(7))
from the algebraic equation:
1) if vy (1) # v! (1), then
S9 (T) = O,
wlvy (1) (p3 (T, ol U) sinws (1) + py (7', ol 0) COS Vg (7'))

S1 <T> = T (7_> -

vy (1) — vy

whoi (7) (ps (1,07, 0) sinvg (1) + pa (1,0, 0) cos vy (7)) B
vi (1) =i (7)

wlivl (1) (p3 (7’, ol 0) cosvd (1) — p4 (7’, ol 0) sin vl (7’)) (vg (1) — s (7'))

vi (1) =i (7)

—w! (p3 (T, ol a) sinvl (1) + py (T, ol, 0) cos vs (T)) :
2) if vy (1) = v] (1), then
2.1) if vo (7) # vl (7), then
s1(1) =0,
wlvy (1) (p3 (7’, ol a) sinwy (7) + p4 (7', ol U) COS Vs (7))

52 (T) - T (7_> -

v2 (T) = v

wlv! (1) (ps (1,07, 0) sinvl (1) + ps (7,07, 0) cosvi (7)) B
v2 (1) =03 (7)

—whol (1) (p3 (7 ol o) cosvh (1) — p4 (7’, ol o) sin v3 (T)) :

2.2) if vy (7) = vl (7), then
s1(1) =0,89 (1) = 0.

To solve the above fixed point problem, similarly to the previous example, we used an
explicit iterative algorithm of simple iterations with the same computational features of
the implementation:

(i (1), v (7)) =
= Py (v] (1) + a(w!(ps (7,07, 0%) sin v} (1) + pa (7,07, 0%) cos v} (7)) + s¥(7)),

5 )
vl (1) + a(wiv] (7) (ps (T, ol O'k) cosvi (1) — py (7’, ol O’k) sinvd (7)) + s5(7))), 7 € [0,1],

= Py wl + « —1+/((p1 (T,al,ak)—i—m (T,UI,O'k))yg (T,Uk)+
T

+ (p2 (7_7 O_Ia O—k) — D3 (7_7 O_Ia Uk)) Ya (7—7 ak) +

+ 0} (1) (ps (.07, 0%) sinvh (1) + ps (1,07, %) cosvf (1)) dT) ) ;
in which value of s*(7) = (s¥(7), s5(7)) is determined from the corresponding algebraic
equation analogous to the single-valued rule for quantity s(7). The operation of projection
Py(z) on set U = {u = (u1,u2) : 0 <uyp <1, —7 < uy <} is realized analytically in
the form of a simple conditional formula.

Bectuuk FOYpI'Y. Cepusa «MaTteMaTudecKoe MoJejinpoBaHUe 63
u nporpammupoBanues (Bectunk FOYpI'Y MMII). 2018. T. 11, Ne 4. C. 55-66



A.S. Buldaev, 1.D. Burlakov

Table 3 shows the data for calculating Table 3
the model problem developed in |2

by multimethod iterative technologies for Method | A®* N
which the initial initial approximations 1 7,0-1 100002
are not given in [2] for a complete 2 7,11 103191
adequate comparison of the approaches 3 2,4-2 100146
considered with the proposed fixed point 4 5,341 100069
algorithm. Table 3 uses notation A®* = 5 6,7-1 100159
|®* — 10, 285456|, ®* is the calculated value 6 6,8+2 4978
of the functional, N is a number of 7 6,6-1 100003
calculated phase and conjugate Cauchy 8 Does not converge | ——
problems.

For comparison, Table 4 shows the results of calculating the problem under
consideration by the fixed point method used for @« = 107% and various initial
approximations. At N > 400000 the calculation of the problem was stopped.

Table 4

0y vy w AD* N

1 1 1 Does not converge | —

1 1 5 1,4-1 12181
1 1 10 3,9-3 11805
1 1 11 7,0-1 125925
1 1 15 4,7 137377
0,5 -1 1 1,4-1 12713
0,5 -1 5 1,4-1 12201
0,5 -1 10 3,9-3 11583
0,5 -1 11 6,7-1 206623
0,5 -1 15 4.5 400000
0,5 1 1 Does not converge | ——
0,5 1 5 1,4-1 12207
0,5 1 10 5,1-3 11117
0,5 1 11 7,0-1 177871
0,5 1 15 4.5 400000

The analysis of these and other calculations performed by the proposed fixed point
algorithm demonstrates similarities to the first model example of the dependence of
the convergence of the algorithm on the projection parameter a > 0 and the initial
approximations.

Conclusion

The computational experiments carried out on model speed problems demonstrate the
computational and qualitative efficiency of the proposed fixed point approach, acceptable
for practice, in comparison with known methods |2|. The developed nonlocal approach to
the search for approximate-optimal solutions has a rather wide range of convergence in
the initial approximation and is characterized by the convenience and simplicity of the
experimental adjustment of the scalar projection parameter that regulates the quality and
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speed of convergence of the iterative process under consideration. Approximately-optimal
solutions of optimal speed problems obtained with the help of the proposed approach can
be considered as acceptable initial approximations for further iterative refinement by other
methods. These features of the proposed approach are important factors for increasing the
efficiency and future development of nonlocal methods for solving optimal speed problems.
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Ob OJITHOM IIOJAXOAE K YVMCJIEHHOMY PEIITEHUWIO
HEJIMHEMHBIX 3ATAY OIITUMAJIBHOT'O BEICTPOJIENCTBUYI

A.C. Byadaes', H./I. Bypaaxos'
'Byparcknit rocynapcTsennniit yausepenTert, . Yiaan-Yus, Poceniickas Depeparys

3a7a4u ONTUMATBHOTO OBICTPOIEHCTBHUS OTHOCATCS K BAXKHEHIMM 3a739aM TEOPUN
VIIPABJSIEMBIX CUCTEM. B KadecTBEeHHOIM TeOpHr HETUHENHBIX 331819 OBICTPOISHCTBIS OMHUM
73 OCHOBHBIX DPE3YJIbTATOB sBJiseTcd npunimn makcumyma llonrparuna. s ucienHOro
pelleHn s HeJTMHENHBIX 33,1249 OBICTPOAEHCTBHUS, HAPSLY C METOIAMU, OCHOBAHHBIMU HA TTPUH-

ouIie MaKCHMyMa, IMXPOKO IIPUMEHAIOT C110CO0bBI CBeACHUA K BCIIOMOI'aT€JIbHBIM 3a/ia4aM
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ONITUMAJIBHOTO YIIPABJIEHHUs C TOMOIIBIO TMPONENYP JUHEAPU3AINN, TapaMeTPHA3aIun, AUC-
KpeTu3aun U APYyTuX IpreMoB. TpPymoeMKOCTh YHUCIEHHBIX METOJO0B OIIPEAe/TIeTCa KOJU-
YECTBOM WTEPAINI /I HAXOXKIEHUS PENTeHus 331291 ObICTPONEHCTBUS ¢ 33JaHHOU TOYHO-
CTBIO. Y HUBEPCAIHHOM BBIYUCIUTEILHON POy PhI, siBJIstomeiics 3 deKTuBHON it pac-
qera pa3HOOOPA3HBIX 337a4 OBICTPONAEHCTBY, B HACTOAIIEE BpeMs He cyirecTByeT. [losro-
MY aKTyaJbHBIM ABIAETCA PAa3pabOTKA CIENMUATIBHBIX TOIX0M0B, TO3BOIIONINX YMEHbIIATE
06beM BBIUUCTEHHH W COKPAINATh UMCJIO UTeparnnii. B pabore mpesiaraercs HOBBIA IOI-
XOJI, OCHOBBIBAIOIINICSA Ha, CBEIEHUN HEJIWHEHHON 3a7a9M ONMTHMAJILHOTO OBICTPOAEHCTRIS
K BCIIOMOTATEIbHON 3a1aue ONTUMUABANNY CO CMEITAHHBIMU YIIPABJISIIONUMEI (DYHKITUSAMHA U
mapaMeTpamu. s moncka periennss BOSHUKAIONMEH BCIOMOTaTeIbHON 381 UCIOIb3YIOT-
cs crenraabHas paspaboranHas GpOpMa YCAOBUH HEIOKAIBHOIO YIYUIIeHNA JOIMYCTHMOTO
yIIpaBJIeHNs B BUe 3aJa91 O HEMOJABU2KHOM TOYKE ONepaTopa yIIPAaBJIEHNI U KOHCTPYHUpPYye-
MBIl NTEPAIMOHHBIN aJITOPUTM TIOCTETOBATEIHLHOTO YIYUIIEHNS TOMYCTUMBIX YITPaBJIEHNH.
[TpoeomuTcs anpobarus v CPABHUTEIbHBIN AHAIN3 BRIYUCIUTETHHOM 3D (DEKTUBHOCTH TIPEI-
JIaraeMoro IMoJIX0/1a HElIOIBUKHBIX TOYEK Ha U3BECTHBIX MOJIEJIbHBIX 3a/la4aX ONTUMAIBHOTO
OBICTPOAEICTBHSI.

Karuesve caoea: 3adana onmumasdbhozo O0bcmpodeticmeus; YcA08UA YAYHULEHUS

YNPasAeHUS; 360040 0 HenodeudcHoll mowke.
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