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ON THE EXISTENCE OF AN INTEGER SOLUTION OF THE RELAXED
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The problem of finding the optimal arrangement of vertices of a tree network in the
installation space representing a finite set is considered. The criterion of optimality is the
minimization of the total cost of deployment and the cost of communications. Placement
of different tree vertices in one point of the installation space is allowed. This problem
is known as Weber problem for a tree network. The statement of Weber problem as an
integer linear programming problem is given in this research. It’s proved that a set of
optimal solutions of corresponding relaxed Weber problem for a tree-network contains the
integer solution. This fact allows to prove the existence a saddle point while proving the
performance of decomposition algorithms for problems different from problems because of
additional restrictions.
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Introduction

The considered problem deals with finding the optimal arrangement of vertices of
a tree network in the installation space representing a finite set [1,2]. The criterion of
optimality is the minimization of the total deployment cost and of communication cost.
Placement of different tree vertices in one point of the installation space is allowed. This
problem is known as Weber problem for a tree network [3,4].

So, let’s consider extremal problem O(G,V, b, c, D)

Cle) = el e+ Y blli. gl (i), (j)) — min (1)

. h pe®
jeJ [i,7]€eE

for given tree G = (J, E), finite set V, mapping b: E x V? — Z=" mapping c: JxV —
Z=° and set ® of allowed placements of set J elements at points of set V.

If & ={p: J — V} (ie. presents unambiguous maps) then problem © is known
as Weber problem for a tree-connecting network. To solve this problem the polynomial
algorithm [5] of complexity O(|J||V]?) is used.

The statement of Weber problem as an integer linear programming (ILP) problem is
given in this paper. It’s proved that a set of optimal solutions of corresponding relaxed
Weber problem for a tree-network contains the integer solution. This fact allows to prove
the existence of a saddle point while proving the performance of decomposition algorithms
for problems different from a problem © because of additional restrictions [1,6].

1. Algorithm of Solving Weber Problem for a Tree Network

To introduce the notation and simplify the presentation of main paper results, we give
the algorithm for Weber problem from the author’s work [5].
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Let N be a cardinality of set J, i.e. N = |J|, jy € J be the end-vertex of tree (J, E).
The choice of vertex jy as a root of tree (J, E') induces partial order

P ={(i,j): i,j € J, j belongs to a trail in (J, E') between i and jy} (2)

of set J.

Let’s assume that J = {k}r_, and corresponds condition (I,m) € P = [ < m. Let’s
designate the direct ancestor of vertex | as F(l), i.e. F(I) = m : [I,m] € E, | < m.
Pseudo-code of Weber problem Oy solution algorithm is presented in Fig. 1.

TreeVebPrbAlg (input: N, F, V, ¢, b; output: ¢, A, @)
begin
for each (i,v) € J x V do ¢&(i,v) := ¢(i,v)
fori:=1up to N —-1do
for each v € V do
begin
(P (i), 0) = E(F(i),v) + miney {66, w) + b(F (), ], 0, u)} ;
Ali, ) = arg minyey {205, u) + b((F (1), i, v, u)} ;
end
©(N) := argmin,cy[¢(N, u)];
for i := N —1down to 1 do (i) := A(i, p(F(i));
stop;
end.

Fig. 1. Algorithm of Weber problem solution
The first stage of the algorithm means the sequential computation of Vv € V' pseudo-costs
é(i,v) == c(i,v) + Z mm é(g,u) +b([iy jl,v,u)], i=1,2,...,N (3)
j: i=F(j
and pseudo-placements

A(i,v):arglunei‘l;l[(z u) + b([F(2),i],u,v)], i=1,2,...,N

and the second stage is the sequential computing of optimal placement for tree vertices
p(NV) = argmin[c(N,u)], - ¢(j) = A, 9(F (7)), j =N —1,.... L (4)

The optimal solution of Weber problem is equal to min,ey [¢(N,u)]. The computing
complexity of algorithm TreeVebPrbAlg is O(|J||V|?). For more details and proofs
see [5].

2. Relaxed Weber Problem

Let’s consider integer linear programming problem
(v.2) = > yle(iv) + ) > 2b((i ) v,u) Jmin (5)
jed, veV [i,j]€E, v,ueV
allowed set M of which is defined by a system of restrictions

Y ovi=1ieJ; (6)

veV
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S ol =y > Al =yllij€E veV; (7)
ueV ueV

y>0, 2>0, (8)

yi€{0,1},ic J veV; (9)

24 € {0,1}[i,j] € E, v,u€V. (10)

Let’s show that there exists 1-1-correspondence between the set of allowed solutions
for problem (5) — (10) and problem © saving the value of a goal function.
Let ¢ € ®. Define (y, z) as following

Y, = X} (0(3)), ieJ, veV, (11)
Zil)]u = X{(v,u)}(@(l)7§0(]))7 [27.7] € E7 v,u € Vva (12>

where xx(-) be a characteristic function of set X. The equality C(¢) = C(y, z) is obvious
in this case. Inclusion (y, z) € M follows from uniqueness of mapping ¢.

Conversely if (y, z) € M then according to (6) and (9) function ¢ : J = V@ (i) =
v: y’ =1 be unique. Moreover, (7) and (10) imply 2% = 1 if and only if v/ = ¢/ =
Hence, equality C(¢) = C(y, z) takes place.

So, it’s possible to formulate © as a problem of integer linear programming (5) — (10).
Later we designate problem (5) — (10) also as Weber problem O, and functions ¢ : J — V
be its solutions, variables (y, z) are determined according to (11) — (12).

Let’s call linear programming problem (5) — (8) varying of Weber problem due to
absence of integrality conditions (9) — (10) as relazed Weber problem ©. Let’s designate
the allowed set for this problem as M. Some properties of polyhedron for relaxed Weber
problem are investigated in |7]. The key result of the current paper is announced in [8].

Theorem 1. [f G is a tree then the optimal solution of Weber problem © is also the
optimal solution of corresponding relaxed Weber problem ©.

Proof. Problem ©*
Zx] —  max (13)

Jed (x,w)EM*
with allowed set M* defined by relations
Z w'd —wfO < c(iv), (i,v) € JxV, (14)
i i=F(j
wyl +wil, <b([i, gl v,u), ([ 5], 0,u) € Ex V?) (15)

is dual to relaxed Weber problem ©.

To prove the theorem it’s enough to construct the allowed solution of (13) — (15)
satisfying the complementary slackness conditions on the decision solution ¢ € & of
problem ©(G, V)b, ¢, ®) constructed using the algorithm TreeVebPrbAlg.

Let

wf VL = min [¢(d, u) + b([F(0), 4, v, w)], (G,0) € J x V. (16)
u
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It follows from (4) and (16) that
Wiy = &6 () + bF(0), 1], ¢(F()), 0(0)). (17)

Because the optimal solution has Zio(i)i: (jy = 1 then corresponding restrictions (15) should
be active. It allows to define

wlOL o = b)), p(F (i), (i) — wi oyt = =i (i), i€l (18)
Assuming
w W, = min {b([F(i),i],u,v) — w0}, i€ ] veV\{e()} (19)

we get vector w satisfying all restrictions (15).
The condition of activeness of restrictions for corresponding variables yfp(i) allows to
define
z; = c(i, p(i)) + Z whil + wf(i)fo(i) = (i, (i) + wf(i)fo(i) =
j: =F(j)
[ &N, p(N)), 1= N,
= { 0, ies\{ny. @0

The second equality in this circuit is a consequence of (3) and (17) and the last one is a
consequence of (18) and abcence of ancestor of vertex N.
For all other values of v € V'\ ¢(J) we have

- ij o F@)i _ F(i)i _ ~(; : N L F(i)i
c(i,v)+ Zwv*—i-w* v = ¢(i,v)+w, v—c(z,v)+11{é1‘1;1{b([F(z),2],u,v) wi ) >
jt =P () N (21)
> min {&(i, o) +b([F (i), i), " v)} — iVl = 0
ve

for restrictions system (14). The first equality in circuit (21) is a consequence of (3) and
(17), the second one is a consequence of (19). The inequality is obvious for

 _ . . . F(i)
[ =arg min <b([z, F(i)],v,1) —w, *>
and the last equality follows from (16).

That’s why the solution (x,w) obtained according to (16) — (20) is allowed solution
of problem (13) — (15) satisfying the conditions of complementary slackness relatively
to solution ¢ € ® of problem O(G,V,b,c, ®) constructed by algorithm. Hence, it is the
optimal solution of (13) — (15). Theorem 1 now follows. At the same time, the way of

defining the integer optimal solution for (13) — (15) is shown. 0

Conclusion

So, it’s proved that a set of optimal solutions of corresponding relaxed Weber problem
for a tree-network contains the integer solution. This fact allows to prove the existence of
a saddle point while proving the performance of decomposition algorithms for problems
different from problem Oy because of additional restrictions.
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O CYHIECTBOBAHUN HEJIOYNCJIEHHOI'O PEIHTEHN A
PEJIAKCVPOBAHHOUN 3A/JIAYYM BEBEPA /1JI4d JPEBOBUIHON
CETU

A.B. Ilanroxos, HOxmo-Ypasbckuil Tocy1apcTBEHHbIN yHUBEPCUTET, T. UeIsa0mHCK,
Poccniickas ®enepariust

PaccMmoTpena 3a1ava HaX0KIEHUS ONTUMAJILHOIO Pa3MEIIeHNsT BEPIIUH JIPEBOBUIHOMN
CETH B MOHTaXKHOM IIPOCTPAHCTBE, IIPEJICTABJISIONIEM KOHEUHOe MHOXKeCTBO. Kpurepuem on-
TUMAJIbHOCTH SIBJISIETCSI MUHUMU3AIMs OOIEil CTOMMOCTH pa3MeIeHnsT B TOYKaX IIPOCTPaH-
CTBa U CTOMMOCTH KOMMYyHuKanuii. /lomyckaercs pasMelienre pa3sHbiX BEPIIUH JEPeBa B Ol
HOI TOYKE MOHTaXKHOT'O IIPOCTPaHCTBa. PaccMarpuBaeMasi mpobJieMa U3BECTHA KaK 3aJa4a,
Bebepa nysa apeBosuanoit ceru. B mamnoit pabore mano mpecrasiienne 3amadu Bebepa Kak
3aJ1a91 O JIMHEHHOM IIporpaMMupoBaHuu. /JokaszaHo, 9TO MHOXKECTBO ONTHUMAJIbLHBIX PeIle-
HUI COOTBETCTBYIOIEH pejlakCuPOBaHHOI 3aa4un Bebepa Jjisi IpeBOBUIHO CETH COMEPIKUT
LIEJIOYHUCJIEHHOE PelleHre. DTOT (paKT IO3BOJIET J0KA3aTh CYLIECTBOBAHUE CE/JIOBOM TOUKM
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[IPU JI0KA3aTeIbCTBE IMPEKTUBHOCTH AJTOPUTMOB JIEKOMIIO3UIUN I 33, OTJIMIAIO-
muxcsd OT 3a7a49u Bebepa HAIUYINEM JIOMOJHATEIbHBIX OTPAHUYIEHHIA.

Karuesvie caosa: 3adavwa pasmewerus; AUHETHOE NPOZDAMMUPOSAHUE; 060TCTNEEH-

HOCTD; PEAGKCAUUA; UCAOUUCACHHOE PEULCHUE; NOAUHOMUAALHOIT anzopumm; 3adaua Be-
6epa.
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