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PERFORMANCE BOUNDS AND SUBOPTIMAL POLICIES
FOR MULTI-CLASS QUEUE

A. Madankan, University of Zabol, Zabol, Iran, Amadankan@uoz.ac.ir

In this paper, we consider a general class of a queuing system with multiple job
types and flexible service facility. We use a stochastic control policy to determine the
performance loss in multi-class M/M/1 queue. The considered system is originally a Markov
decision processes (MDP). The author showed how to compute performance bounds for
the stochastic control policy of MDP with an average cost criteria. In practice, many
authors used heuristic control policies due to some hardness in computing and running
mathematically optimal policies. The authors found bounds on performance in order to an
optimal policy where the goal of this job is to compute the difference of optimality and a
specific policy. In other words, this study shows that, the optimal bounds of the average
queue length for any non-idling policies can be found by a factor of service rates.
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Introduction

We are interested to use an average cost per period (ACPP) in a multi-class job
M/M/1 queue to determine the performance loss associated with using a control policy.
We consider non-idling policies, which always mean serving jobs as long as there are jobs
in the queue. The problem considered in this paper is to control a single server queue with
multiple job class. [1,2| have shown that the optimal policy for this problem is known where
the implementation of that optimal policy needs the exact information about the service
rate for each class. However, note that it is a little difficult to analyse the performance of
some policies, such as FIFO (see [1]).

Indeed it is known (see for example [3,4]) that the cu-rule is the optimal control
in two main settings: (i) generally distributed service requirements among all non-
preemptive disciplines and (ii) exponentially distributed service requirements among all
preemptive disciplines. In the preemptive case cu-rule is only optimal if the service times
are exponentially distributed. The queuing system that we considered to work on, is in
the discrete-time case where the other case and its optimal control policy is studied before
and is cp rule. In the discrete-time case, optimality of cu rule was established in [4, 5].
We recall that cu-rule is the discipline that gives a strict priority in descending order of
crpltk, where ¢, and py refer to a cost and the inverse of the mean service requirement,
respectively, of class k.

The problem that we considered is Markov decision processes with an objective of
an average cost per period. The main job of this paper is to find a method to determine
the performance loss associated with using an optimal control. We produce a systematic
approach to reach that and to evaluate the difference between optimality and the costs
from a specific policy. We use the presented methods to supply a relation between two
costs, one by a specific sub-optimal policy and the other one by an optimal policy. We
believe that our results open an interesting topic for the further research. For instance,
well-known optimality results in a single-class queue like the optimality of the Shortest
Service time discipline or the optimality of FCFS can all be derived as corollaries of the
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queue. In order to get insights into the structure of the optimal policy in the multi-class
case we consider several relevant cases where the service time distributions are exponential.

Finding an optimal control policy for a Markov decision process is one of the
highlighted topics for infinite (or even very large) state space systems where computing it
often is intractable [3]. It is not easy to run even the known general form of the optimal
control policy due to some difficulties since at each time there is a slot in the discrete
time process. In each time slot, we need high computational work to evaluate the costs
of control action [6]. As a result, these are the reasons why we use sub-optimal heuristic
control policies in practice.

In the present work, by using the general discussed methodology we present a factor
which contains only the service rates for sub-optimality of the queue for any considered
policy. The obtained bound establishes that there should not be much effects on the
queue length when the service rates are approximately the same. Our contribution bounds
on ACPP for the problem of controlling multi-class queues. Many authors have already
worked to find bounds in Markov chain problems and also in finding the optimal control
and analysis of multi-class queues.

Due to the average cost of Markov decision processes for finite state Markov chains,
as it is done in [7], bounds are used to provide convergence of an iteration algorithm. On
the other hand for general state spaces that we considered here, the obtained bounds are
associated with Lyapunov theorems for Markov chains where one can find a similar upper
bound in [5]. For systems with positive unbounded costs, the standard Lyapunov theorems
are used to produce upper bounds. The bounds can be considered universalization of the
Lyapunov bounds and also the finite state bounds. These bounds have a feature that with
unbounded costs one can provide an upper bound and lower bound.

1. Problem Definition

The model that we want to consider is a multi-classes queuing system where each job
belongs to a variety distinct classes. On the assumption that the system deals with one
class of the job, then the order of serving jobs is not important and also does not impress
the quantities such as average queue length, the results from any simple control policies
(such as first come-first service (FCFS)) and more complex control policies are the same.
While jobs depend on service time then the order of serving impress on quantities such
average queue length. There are many policies which minimizes an average queue length
for finite multi-class M/M/1 queuing system where one can find in [3|. There are some
differences between multi-classes queue rather than single class queue which, for instance,
are (1) the frequently of the job arrival of some classes is more than some other classes,
(2) the service time of some classes is longer than other classes.

Due to the optimal policy for the considered model, we give priority to classes according
to an average service time which means job classes with shorter average service times have
a higher priority than job classes with longer average service times. Also, we consider
preempting in the service where it means we temporarily stop serving a low priority job
when a job of higher priority arrives. This means we consider the difference between classes,
need statistically information of serving all classes, and allow to preempt jobs in the service
if it is needed. Due to sub-optimal control policy, let consider the set of policies that server
serves all jobs in the queue without idling and taking rest. We call these theme non-idling
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policies. We denote that there is a factor which contains only the service rates when it
bounds the queue lengths. The obtained bound, for almost the same service rates for all
classes, produces quantifying the inherent sense where the control policy affects just a
little bit on the queue length.

1.1. Notation

Let consider discrete-time Markov decision processes where for such a system we
consider ) be a measurable general state space with respect to some given o-field
B()), a finite set of available actions A at each time slot, and measurable cost function
z: Y x A— R. At state y € Y, action a € A is the cause of specified cost.

Let consider stochastic kernel p to evolute the state. The kernelis p : Y x Y xA — [0, 1]
and its definition is presented by

p(B,y,a)ZPT{Y;H €B ' KZy,At:a}, Vyed, ac A Bec B(B).

In addition, p(B,.,.) : ¥ x U — [0, 1] is a measurable function for each B € B(B).
In the supposed system, we considered the performance of systems subject to the static
state-feedback policies. We consider p : ) — A to be a measurable function that depends
on the running system state, it chooses the action in each time slot. Let define a set of all
measurable policies p by set @ = {p: Y — Alp is measurable}.

The state evolution is a random process which is based on policy p € @, is
time-homogeneous Markov chain (Yp, Y, ...). Stochastic kernel p(B,y, p(y)) specifies the
transition probability for the Markov chain.

To convenience and to_ ease of use 1of notation we define FEC =

t—1 t—
%ZE{C(Yk,p(Yk)) ' Yo = y] and Ec = %ZE|:C(Y;€) ’ Yo = y] and use Fg to
k=0 k=0

show the expectation of ¢g(Y;+1) on condition Y; = y. Now we consider the following
performance function for a system under specific policy p € @ in terms of ACPP

J(p) = limsup EC,

t—o00

where we can define
Jopt = inf {lim inf EC} .
pPeEQR t—00
Finding and developing tools to determine policies which achieve ACPP J(p) close to Jot,
is our goal.

2. Bounds of Markov Chain without Control

Y. Wang and S. Boyd in [8] showed how to compute performance bounds for finite-
horizon stochastic control problems with linear system dynamics and arbitrary constraints,
objective, noise distribution, and with asymmetric costs and constraint sets. Here we
present a methodology to find an approach to determine bounds on ACPP. In this order
and before presenting a lower bound on ACPP, first we try to find the bounds for Markov
chain without control (or with a given state-feedback control) and then we develop this
approach to present a lower bound on ACPP for any policy and then we investigate the
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difference between the optimality and the given policy with using an upper bound and a
lower bound on the cost by a given policy and by any policy, represently. Here we consider

Theorem 1. Suppose g : Y — R is a measurable function. We suppose C(y) = c(y) +

Eg—g(y) and define
v, = sup {C(y)}, o = inf {C(y)}
yeyY yey

If there exists an € > 0 such that

sup {E [\gmﬂ)\l“

yey

Vim ] - o)} < o

then for all y € Y,

, > limsup Fec, «, <liminf Fec.
t—o00 t—o0

This theorem is the main result of this paper and we use it to determine upper and
lower bounds on the average cost incurred by Markov chains with general measurable state
spaces. But before we prove Theorem 1, we express the existence of all expectations that
we need.

Lemma 1. Suppose g : Y — R is a measurable function, consider

sup C'(y) < oo, inf C(y) > —o0,
yey yey

and there exists an € > 0 such that

sup { B[Vl | ¥ =] Lo} < 1)

then for ally € Y
Bl | ¥ =] <, )
’Elc(yk) Yy = y] ’ < o0. (3)

Proof. Suppose that there is M such that (1) equals to M, so the immediate result is

E[\gmﬂ)\l“

i — y} < M+ |g(y)["*, ¥y € V.

With clarity E[lg(Yp)|'™|Ys = y] < oo. Also, using induction, if for some ¢,
Eflg(Yy)|"*[Yo = y] < oo, then
E{\Q(Ym)\l“ Yo = y} <M+ E{\g(Yt)\”E Yo = y} < 00.
and as a result,
Bl |y = o] < o
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Also from the fact that g(y) < 1+ |g(y)[*",

E[Q(Y}) ‘ Yo Zy} < 1+E[[g(}/;)’1+5

Yozy]<oo,VyEy.

And also, since —g(y) > 1+ |g(y)|**e,

o<1 E{wmwe Yo = y] < Elgm Yo = y} ey
Now if
sup {c<y>} < ay < o0,
yey
then
(y) < + gly) — E[gmm i = y] "

where |E[g(Yi41)[Y: = y]| = [E[g(Y1)|Yo = y]| < co. Accordingly,
Elc(Y}) ’ Yo = y] < 00, Vt and Vy € ). (4)

In the similar way, if

inf {C(y)} > > —00,

yey
then
) > or-+ ) = E|g(0in) | Yi= ] v €,
Accordingly
—oo<Elc(Yt) ’Y():y],w and Vy € V. (5)
Now it is clear that (3) is the result of combining of (4), (5).
O
Now we can prove theorem 1.
Proof. |Proof of Theorem 1| By the definition of «, we have
= = 1
00z 1B | 000 | Yo=u| = § X e | v =] 41 (E[s0) | Yo =] o)
k=0 k=0
which means
1 < 1
+Y et | Y= o] < o (s0) - B0 1 %= 11).
k=0
In the similar way,
1 — 1
£ > B[ei) | o= 2 0§ (500 - B0 1 o= 1),
k=0
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Now if we show that lim;_, tE [ (Yy)

Yy = y] =0, for all y € Y, then we have completed
the proof.

Suppose that the supreme of F l\g(YHl)\Ha
M where M < oo. So

Y, = y] —|g(y)|*** for all y € Y is equal

Z( lg(Yis) ' | Ya] = !g(Yk)\”E> ’ Yo=y

o] - la)**) (6)

- oo

with some algebra we have that.
Also we know that

M >

(lg()|"F* + EM) ™% < [gy)| + (M) T, (7)

therefore (6) and (7) imply that

1
B|lov0l | ¥ =] <lotl + can)
By taking lim sup as t approaches oo, from both sides of (8) we have

1
imsup 15 1g(4)

t—o00

Yo:y] < tim =+ (lg(w)| + (M)7) =0,

and so .
lim E{ (Y2)

t—oo t

3. Bounds with Control

We used Theorem 1 to provide bounds on ACPP that acquired by Markov chains.
These bounds are established in the general measurable state spaces of the Markov chains.
In this section we extend the result to establish a lower bound on ACPP acquired by any
policy to bound the difference between J(p) and J,,; for some specific p.

Lemma 2. Suppose h : Y — R is a measurable function, consider oy be the infimum of the
{c(Y,a)+ Elg(Yi)|Yi =y, Ar =a]l — g(y)} for ally € Y and a € A. And for any static
state-feedback control policy p : Y — A such that

sug {EHQ(YtH)\HE\Y} =y, A = p(y)] — ’g(y)‘HE} < 00,
ye

has ACPP where satisfies

t—1

1
ar < liminf - ZE (Y, (Vi)Yo =], Yy e .

=0
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Proof. For any state feedback policy p € P

a= inf {c(y,a)+ EBlg(Yirr)[Ye =y, A = a] = g(y)} <

yeY,acA

< ;gg{c‘(y,p( y)+ Elg(Yie)[Ye =y, A = p(y)] — 9(y) } .

Now by applying Theorem 1 the proof is done.

4. Control Policy of Multi-Class Queue

The considered queuing system is a discrete time model. Let us consider in the each
time slot ¢, we have W/ € {0, 1} arrival jobs in class i to the queue. Also let’s put restriction
to have at most one arrival in each time slot (we can consider a small time interval to have
it), which means Y W{ < 1. Let consider W, = (W}, ..., W}¥) denotes the arrival vector.

7
Also consider that any vectors W; and Wy are i.i.d for any individual time slots, t' # t.
We consider \; = E[W}/], where it is independent from ¢. Let Y} denote the number of
jobs in class i at given time ¢, and consider Y; = (Y}, ..., Y}V) as a state vector. Also we
characterize control sequence U; in each time slot ¢ such that

A — 1, if a job of class ¢ is being serviced,
£ 1 0, otherwise.

A service, of a job of class ¢ that is being served in a given time slot, will be completed
with probability #; where this 6#; is independent from the service history. Also, let’s define
the number of departure jobs of class 7 in time slot ¢ (those are served successfully) as
random variable D! = A'I(Y})B'. In this random variable, parameter B’ briefs a Bernoulli
random variable where E[B‘] = 6; and I is the indicator function,

0, if y=0,
I(y):{1 -

otherwise.

We have the form of the queue length dynamic according to Y}, = Y;"+ W/} — Dj for each
ie{l,...,N}.

This problem is a Markov decision process with ACPP criteria since we aimed to
choose how to serve different job classes to minimize an average queue length. The state
space, for the considered model, is ) = ZN , where the actions are chosen from the
A= {aG{O 1}N\Zaz—1}

In each tlme slot ¢, the cost gives the number of jobs of all classes where it represents
by ¢(Y;) = Z Y. Let p: Y — A be a policy, and consider sequence of (Yp,Y,...) for the

queue length process supporting by this policy. Then the average queue length supporting
by policy p is

t—1
J = limsu Elc(Yy)|Yo=0
() =timsup ¢ 3 Flelri) v = 0]

The control policy affects on the average queue length where it is the problem that we
want to consider. Stability is a measure that under, the bounded queue lengths exists for
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any non-idling policy. We call a policy is non-idling if y # 0, then we have y; > 0 when
p(y) = a;. Lemma 3 is for the cases that the system is not stabilized under a non-idling
policy and since the result is standard (see, [16]), we omitted the proof.

N
Lemma 3. On condition that ; ’9\—:' > 1, we do not have any non-idling policy with bounded

average queue length.

Theorem 2. Consider that Qn; be the set of all policies that are non-idling one and let
p € Qny be an arbitrary one, and also let

Jopt = inf {lim inf EC} .

PEONT t—o0
N
]le ’9\—2 < 1, then J(p) < oo and we have

J(p) _ maxifi}
Jopt — min{6;}

Proof. In order to have a lower bound for J,,;, we define

ay) = Ki ( %> —|-l€22yZ

le

where the coefficients K; and K5 are

min{0; } N o,
211 -3 7 =1
i=1 '
Let Ay(y,a) = E[gi(Yi1)|Y: = y, Ay = a] — gi(y). For all y # 0, action a which minimizes
2(y) + Ai(y, a) has

E i\f:g\Y;:y Ay=a| =1.
= O ’
Therefore,
N mln{Q }
min{z(y) + Ai(y, a)} = Z; yi + amin{6;}.

In order to have an upper bound on J,, we use following function,

N . 2 N .
=15 | (L4 +n3
i=1 " i=1 "
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where constant K3 is
max{0; }
(2

~ .
2(1—2%)
i=1 "

Let consider A, (y) = E[gu(Yi+1)|Y: = y] — gu(y). With using the dynamic of queue length
Vi, =Y+ W] — D; we have

Ky =

N max{6,}
2@+ Auly) =D (1= = | v+ amax{0;},

i=1

where

To finish our job in this proof, we need to show that for any policy p € Qxn; which is
non-idling we have,

Sup{ E[¢u (Yis1)*|Ys = v, A = p(y)] — g9u(y)*} < o0,

yey

and
sup{ E[gi(Yi1)?|Y: = y, A = p(v)] — ai(y)*} < o0.

yey

Functions ¢, and ¢; have the following form

g(z) = K(2* + Kyx),

N
where in the above equation, variable x = ) 4. Now by squaring g we have
71 1

g(x)? = K?(a" + 2kpa® + k3a?).

The expected drift for any non-idling policy, F[g(Yi1)%|Y: = y, As = p(y)] — g(y)? is a
polynomial of degree third where its third order term is equal to

Ny Noo\?
A2 <Ze—f—1> <ZZ—> .
i=1 " i=1

It is obviously negative for all ¥y # 0 when the system is stable, where it means, the
expected drift in g2 has upper bound for all policies in Qy;. Hence, bounds «,, and a; are
well-founded and satisfy

Jp) _ o, {0}

<=
Jopt oo mln{el}

O
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The point of this job is that we did not consider simply the maximum and minimum
service rates of queues to find the lower and upper bound of the average queue length
of the multi-class queue, respectively. Although these type approaches, that consider the
minimum and maximum service rates of queues give the bounds but they can be made
a large difference between these bounds for the given service rates. In fact, the bounds
by provided in Theorem 2 is tighter than the bound obtaining from considering minimum
and maximum service rate.

Conclusion

In this paper, we considered a queuing problem which is Markov decision process in
the general state space and we described the method for computing bounds on the costs
in such processes with average cost per period. Our method naturally yields the factor
that can be used at the problem of controlling of a multi-class queue to find a bound on.
The bound that we found is a relation between the average queue length acquired by any
policies and acquired by an optimal policy where this bound is totally different with the
bound that is obtained by applying minimum and maximum service rate in queues which
serve multi-class jobs.
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I'PAHUILBI ITPONU3BOAUTEJIBHOCTU N1 CYBOIITUMAJIBHBIE
CTPATEI'UM OJId MHOT'OKJIACCOBOI OUEPEIN

A. Madankan, Yuusepcurer 3abouibl, I. 3abosia, pan, Amadankan@Quoz.ac.ir

B sr0it craThe paccMaTpuBaeTcs 00U KJIACC CUCTEMBI MACCOBOI'O OOCJIY?KUBaHUS C
HECKOJIbKMMU TUIIAMU 3aJaHUIl 1 TMOKMMU BO3MOXKHOCTSIMU 00C/IyKuBaHus. Vcmosib3yer-
Csl CTOXACTUYECKasl CTPATErnsl YIIPABJIEHUS JJIsi OIIPEJIeJIEHNUs] IOTEPU IPOU3BOIUTETLHOCTI
B MHOIOKJIaccoBoii ouepenu M/M /1. PaccmarpuBaemast cucreMa U3HAYAIBHO IIPEICTABIIS-
eT coboif MApPKOBCKMII TIPOIECC MPUHATH pernernii. B pabore mokasaHno, Kak pacCcInTaTb
PPAHUIBI TPOU3BOIUTEILHOCTH JIJIsl CTPATErHH CTOXACTUIECKOrO yIIPABJIEHUS MapPKOBCKO-
ro IpoIlecca NMPUHSITHS PEIleHrs ¢ KPUTEePUsIMU CpejHeil crommoctu. Ha mpakTuke MHO-
r'ue UCCJIeI0BaTe I UCIIOIb30BAJIM IBPUCTUIECKIE CTPATEIMH YIIPABJIEHUs] U3-38 HEKOTOPOIt
CJIOKHOCTU B BBIYUCJEHUSX W UCIOJIB30BAHUN MATEMATHIECKH ONTHMAJHLHBIX CTPATErHil.
Hesp annoit paboThl 3aKIIOYACTCA B PACIETe PA3HUIBI MEXK/y ONTUMAJILHON M KOHKpET-
HOU CTpaTeruii, a Tak»Ke B HAXOXKJIEHUU TPAHUIBI TPOU3BOJIUTEHBHOCTH JJIS ONITUMAJIBLHOM
crpareruu. IpyruMu cjioBaMu, 3TO HCCIEIOBAHNE TOKA3BIBAET, YTO ONTUMAJIbHbIE I'PDAHUITHI
cpejHell JIMHBI OYepean JJisl JIFOObIX cTpaTeruii 6e3 mpoCcTosl MOXKHO HAWTHU C ITOMOIIBIO
K03 purnmenTa CKOpocTr 00CTy KIUBAHS.

Karouesvie cao6a: cucmema Mmacco8020 00CAYNCUBAHUA; MHOZOKAGCCOBbE 300G4U;
cmpame2us CMoOTacmuUMeck020 KOHMPOAS.
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