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We investigate stability of solutions in linear stochastic Sobolev type models with

the relatively bounded operator in spaces of smooth differential forms defined on smooth

compact oriented Riemannian manifolds without boundary. To this end, in the space of

differential forms, we use the pseudo-differential Laplace–Beltrami operator instead of the

usual Laplace operator. The Cauchy condition and the Showalter–Sidorov condition are used

as the initial conditions. Since “white noise” of the model is non-differentiable in the usual

sense, we use the derivative of stochastic process in the sense of Nelson–Gliklikh. In order to

investigate stability of solutions, we establish existence of exponential dichotomies dividing

the space of solutions into stable and unstable invariant subspaces. As an example, we use

a stochastic version of the Barenblatt–Zheltov–Kochina equation in the space of differential

forms defined on a smooth compact oriented Riemannian manifold without boundary.
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Gliklikh derivative.
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Introduction

The Barenblatt–Zheltov–Kochina equation

(λ−∆)u̇ = α∆u+ f (1)

simulates dynamics of pressure of a liquid filtered in a fractured–porous medium.
Parameters α and λ are real and characterize the environment and properties of the liquid,
respectively, and function f = f(x) plays the role of an external influence.

The study of solvability of the initial–boundary value problems for equation (1) in
Banach spaces with the Cauchy condition is based on the approach described, for example,
in [1], where this equation is reduced to abstract linear Sobolev type equation

Lu̇ =Mu+ f (2)

in suitable function spaces U and F. Paper [2] considers splitting of similar spaces and
splitting of the action of elliptic operators in spaces of smooth differential forms defined
on smooth Riemannian manifolds without boundary.

Further, paper [3] considers stochastic equations of Sobolev type

L
o
η=Mη +Nω, (3)

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (ВестникЮУрГУ ММП). 2019. Т. 12, № 2. С. 47–57

47



O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk

where η = η(t) is a stochastic process,
o
η is the Nelson–Gliklikh derivative of process [4],

w = w(t) is a stochastic process that corresponds to an external influence; L,M,N ∈
L(U;F) are operators, and operator M is (L, p)-bounded, p ∈ {0} ∪ N. Paper [5] shows
the results of studying equation (3) in the case when operator M is (L, p)-sectorial, p ∈
{0}

⋃

N. Then, paper [6] considers equation (3) in the case when operator M is (L, p)-
radial, p ∈ {0}

⋃

N. Note that all three papers [3,5,6] along with classical Cauchy problem

η(0) = η0 (4)

consider Showalter–Sidorov problem

P (η(0)− η0) = 0. (5)

Paper [7] considers more general initial-finite conditions for equation (3), and paper [8]
investigates the Cauchy and Showalter–Sidorov problems posed for the Sobolev type
equation of high order.

The stochastic Barenblatt–Zheltov–Kochina model with additive “white noise” given
in a bounded domain is considered as a concrete interpretation of abstract stochastic
equation (3) in [3] and is transferred to a Riemannian manifold without boundary in [9].
Paper [10] was the first to consider the dichotomies of solutions to abstract homogeneous
Sobolev type equation

Lu̇ =Mu, (6)

where operator M is (L, p)-bounded, p ∈ {0}
⋃

N.
The paper is devoted to the study of dichotomy of solutions to abstract homogeneous

stochastic Sobolev type equation

L
o
η=Mη, (7)

where operator M is (L, p)-bounded, p ∈ {0}
⋃

N. The Barenblatt–Zheltov–Kochina
stochastic equation given on a Riemannian manifold without boundary is considered as a
specific model.

Note also other approaches to the study of groups and semigroups of stochastic
equations, for example, proposed in [11] or in [12–14].

The paper, in addition to the introduction, conclusion and bibliography, contains
three sections. In the first section, we introduce the terminology of linear Sobolev type
equations, including the terminology related to stability, and the main theorems proved
in other papers. The second section describes a stochastic analogue of the Barenblatt–
Zheltov–Kochina equation in specially selected spaces. The third section gives the main
result on existence of exponential dichotomies of solutions to the equations. The conclusion
presents several directions for further research. Note also that the bibliography does not
pretend to be complete, but reflects only the personal preferences of the authors.

1. Dichotomies of Solutions to Equations in Banach Spaces

Let U and F be Banach spaces, and operators L, M ∈ L(U;F). Consider L-resolvent
set ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)} and L-spectrum σL(M) = C \ ρL(M) of
operator M . If L-spectrum σL(M) of operator M is bounded, then operator M is called
(L, σ)-bounded. If operator M is (L, σ)-bounded, then there exist projectors
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P =
1

2πi

∫

γ

RL
µ(M)dµ ∈ L(U), Q =

1

2πi

∫

γ

LL
µ(M)dµ ∈ L(F).

Here RL
µ(M) = (µL − M)−1L and LL

µ(M) = L(µL − M)−1 are the right and the left
L-resolvents of operator M , respectively, and closed loop γ ⊂ C bounds the domain
containing σL(M). Set U0 (U1) = kerP (imP ), F0 (F1) = kerQ (imQ). Denote the
restriction of operator L (M) to Uk by Lk (Mk), k = 0, 1.

Theorem 1. [1, Ch.3] Let M be (L, σ)-bounded operator, then
(i) operators Lk (Mk) ∈ L(Uk;Fk), k = 0, 1;
(ii) there exist operators M−1

0 ∈ L(F0;U0) and L−1
1 ∈ L(F1;U1).

Corollary 1. Let M be (L, σ)-bounded operator, then

(µL−M)−1 = −
∞
∑

k=0

µkSk−1L−1
1 Q +

∞
∑

k=1

µ−kHkM−1
0 (I−Q),

where operator H = L−1
0 M0 ∈ L(U0), S = L−1

1 M1 ∈ L(U1).

Further, (L, σ)-bounded operator M is called (L, p)-bounded, p ∈ {0} ∪ N, if
∞ is a removable singular point (H ≡ O, p = 0) or a pole of order p ∈ N

(i.e. Hp 6= O, Hp+1 ≡ O) of L-resolvents (µL − M)−1 of operator M . We consider
vector function u ∈ C1(R;U) as a solution of equation (6), if u substituted to equation (6)
makes (6) true. Solution u = u(t) of equation (6) is called a solution of Cauchy problem

u(0) = u0 (8)

for equation (6), if equality (8) holds for some u0 ∈ U.

Definition 1. Set P ⊂ U is called a phase space of equation (6), if
(i) any solution u = u(t) to equation (6) belongs to P pointwise, i.e. u(t) ∈ P for all

t ∈ R;
(ii) for any u0 ∈ P there exists unique solution u ∈ C1(R;U) of Cauchy problem (8)

of equation (6).

Theorem 2. [1, Ch.3] Let M be (L, p)-bounded operator, p ∈ {0} ∪N. Then phase space
of equation (6) is the subspace U1.

Note that if there exists operator L−1 ∈ L(F;U), then phase space of equation (6) is
space U.

Definition 2. [10] Subspace J ⊂ U is called an invariant space of equation (6), if for any
u0 ∈ J the solution of problem (6), (8) is u ∈ C1(R; I).

Note that if equation (6) has phase space P, then any its invariant space J ⊂ P.

Definition 3. [10] Solution u = u(t) of equation (6) has exponential dichotomy , if
(i) phase space P of equation (6) splits into a direct sum of two invariant spaces (i.e.

P = J+ ⊕ J−), and
(ii) there exist constants Nk ∈ R+, νk ∈ R+, k = 1, 2, such that
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‖u1(t)‖U ≤ N1e
−ν1(s−t)‖u1(s)‖U for s ≥ t,

‖u2(t)‖U ≤ N2e
−ν2(s−t)‖u2(s)‖U for t ≥ s,

where u1 = u1(t) ∈ J+ and u2 = u2(t) ∈ J− for any t ∈ R. Space J+(J−) is called stable
(unstable) invariant space of equation (6). And if J+ = P (J− = P), then stationary
solution of equation (6) is stable (unstable).

Theorem 3. [10] Let M be (L, p)-bounded operator, p ∈ {0}∪N, and σL(M)
⋂

{iR} = ∅.
Then solution u = u(t) of equation (6) has exponential dichotomy.

2. Dichotomies of Solutions of Equations in Spaces

of Differentiable “Noises”

Let Ω ≡ (Ω,A,P) be a full probability space, R be set of real numbers endowed with
the Borel σ-algebra. Measurable mapping ξ : Ω → R is called a random variable. A set
of random variables having zero expectation (Eξ = 0) and finite dispersion forms Hilbert
space L2 with scalar product (ξ1, ξ2) = Eξ1ξ2. Let A0 be a σ-subalgebra of σ-algebra A.
Construct subspace L

0
2 ⊂ L2 of random variables measurable with respect to A0. Denote

the orthoprojector by Π : L2 → L
0
2. Let ξ ∈ L2, then Πξ is called a conditional expectation

of the random variable ξ, and is denoted by E(ξ|A0).
Consider set I ⊂ R and the following two mappings. First, f : I → L2, associates each

t ∈ I with random variable ξ ∈ L2. Second, g : L2 × Ω → R, associates each pair (ξ, ω)
with point ξ(ω) ∈ R. The mapping η : R× Ω → R having form η = η(t, ω) = g(f(t), ω) is
called (one–dimensional) stochastic process. Therefore, stochastic process η = η(t, ·) is a
random variable for each fixed t ∈ I, i.e. η(t, ·) ∈ L2, and stochastic process η = η(·, ω) is
called a (sample) path for each fixed ω ∈ Ω. Stochastic process η is called continuous, if all
its paths are almost sure continuous (i.e. at almost all ω ∈ Ω paths η(·, ω) are continuous).
The set of continuous stochastic processes form a Banach space, which we denote by CL2.
Fix η ∈ CL2 and t ∈ I, and denote by N η

t the σ-algebra generated by a random variable
η(t). For brevity, Eη

t = E(·|N η
t ).

Definition 4. Let η ∈ CL2. A random variable

o
η=

1

2

(

lim
∆t→0+

E
η
t

(

η(t+∆t, ·)− η(t, ·)

∆t

)

+ lim
∆t→0+

E
η
t

(

η(t, ·)− η(t−∆t, ·)

∆t

))

is called Nelson–Gliklikh derivative
o
η of the stochastic process η at point t ∈ I, if the

limits exist in the sense of the uniform metric on R.

Let C
l
L2, l ∈ N, be a space of stochastic processes whose paths are almost sure

differentiable in the sense of the Nelson–Gliklikh derivative on I up to order l inclusively.
Spaces C

l
L2 are called the spaces of differentiable “noises”. Let I = {0} ∪ R+, then a

well–known example [3, 5] of a vector of space C
l
L2 is given by a stochastic process that

describes the Brownian motion in Einstein–Smoluchowski model

β(t) =
∞
∑

k=0

ξk sin
π

2
(2k + 1)t,

where independent random variables ξk ∈ L2 are such that dispersion Dξk = [π
2
(2k+1)]−2,

k ∈ {0} ∪ N. As shown in [4],
o

β (t) = β(t)
2t
, t ∈ R+.
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Now let U (F) be a real separable Hilbert space with orthonormal basis {ϕk}({ψk}).
Denote by ULL2 (FML2) the Hilbert space, which is a completion of the linear span of
random L-variables

η =
∞
∑

k=1

λkukξkϕk (ω =
∞
∑

k=1

µkfkζkψk) (9)

by the norm

‖η‖2U =
∞
∑

k=1

λ2ku
2
kDξk (‖ω‖2F =

∞
∑

k=1

µ2
kf

2
kDζk).

Here sequence L = {λk} ⊂ R+ (M = {µk} ⊂ R+) is such that
∞
∑

k=1

λ2k < +∞ (
∞
∑

k=1

µ2
k +∞),

{uk} ({fk}) is a sequence of coefficients of vector u ∈ U (f ∈ F) expansion by basis
{ϕk} ({ψk}), and {ξk} ⊂ L2 ({ζk} ⊂ L2) is a sequence of random variables. Note that for
existence of a random L-variable η ∈ ULL2 (ω ∈ FML2) it is enough to consider a sequence
of random variables {ξk} ⊂ L2 ({ζk} ⊂ L2) having uniformly bounded dispersions, i.e.
Dξk ≤ const, k ∈ N (Dζk ≤ const, k ∈ N).

Next, consider interval I = (ε, τ) ⊂ R. Mapping η : (ε, τ) → ULL2 given by formula

η(t) =
∞
∑

k=1

λkukξk(t)ϕk, (10)

where {ξk} ⊂ CL2 is a sequence, is called U-valued continuous stochastic L-process, if the
series on the right-hand side converges uniformly on any compact in I by norm ‖ · ‖U,
and paths of process η = η(t) are almost sure continuous. Continuous stochastic L-process
η = η(t) is called continuously Nelson–Gliklikh differentiable on I, if series

o
η (t) =

∞
∑

k=1

λkuk
o

ξk (t)ϕk (11)

converges uniformly on any compact in I by norm ‖ · ‖U, and paths of process
o
η=

o
η (t) are

almost sure continuous. Let C(I,ULL2) be a space of continuous stochastic L-processes,
and C

l(I,ULL2) be a space of continuously differentiable up to order l ∈ N stochastic
L-processes. An example of a stochastic L-process, which is continuously differentiable up
to any order l ∈ N inclusively, is Wiener L-process [3, 5]

WL(t) =

∞
∑

k=1

λkβk(t)ϕk,

where {βk} ⊂ C
l
L2 is a sequence of Brownian motions on R+. Similarly, spaces

C(I,FML2) and C
l(I,FML2), l ∈ N, are constructed. Note also that spaces

ClL2,C(I,ULL2) and C
l(I,FML2), l ∈ N, are called the spaces of differentiable L-

“noises” [3].
Consider an operator A ∈ L(U;F). It is clear that the same

operator A ∈ L(ULL2;FML2). Moreover, there exists the following lemma holds.

Lemma 1. Let operators L,M ∈ L(U;F), where operator M is (L, p)-
bounded, p ∈ {0} ∪ N. Then operator M ∈ L(ULL2;FML2) is also (L, p)-bounded,
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p ∈ {0} ∪ N, where operator L ∈ L(ULL2;FML2). Moreover, L-spectrum of operator
M ∈ L(U;F) coincides with L-spectrum of operator M ∈ L(ULL2;FML2).

The interested reader is encouraged to prove this statement. According to Lemma
2.1, all results of section 1 are transferred from Banach spaces to spaces of differentiable
L-“noises”.

Let operators L, M ∈ L(ULL2;FML2). Consider equation

L
o
η=Mη. (12)

Stochastic L-process η ∈ C
1(R;ULL2) is called a solution of equation (12), if η substituted

to equation (12) makes (12) true. Solution η = η(t) of equation (12) is called a solution of
Cauchy problem

η(0) = η0, (13)

for equation (12), if equality (13) holds for some random L-variable η0 ∈ ULL2.

Definition 5. Set PLL2 ⊂ ULL2 is called a stochastic phase space of equation (12), if
(i) almost surely each path of solution η = η(t) of equation (12) belong to PLL2, i.e.

η(t) ∈ PLL2, t ∈ R for almost all paths;
(ii) there exists the unique solution of problem (12), (13) for almost all

paths η0 ∈ PLL2.

Since the solution of problem (12), (13) is a stochastic L-process, and only one of its
paths is observed in reality, we consider necessary to make an explanation. Recall [5–7]
that stochastic L-processes η = η(t) and ζ = ζ(t) are considered equal, if almost surely
each path of one of them coincides with any path of the other. Next, extend projector P
of section 1 from Banach space U to the space of random L-variables ULL2. It is easy to
show that operator P ∈ L(ULL2) is also a projector. Set U

0
LL2 = kerP , U1

LL2 = imP
such that ULL2 = U

0
LL2 ⊕U

1
LL2.

Theorem 4. Let operators L,M ∈ L(ULL2;FML2), where operator M is (L, p)-bounded.
Then phase space of equation (12) is space U

1
LL2.

Note that if there exists operator L−1 ∈ L(FML2;ULL2), then U
1
LL2 = ULL2.

Definition 6. Subspace ILL2 ⊂ ULL2 is called an invariant space of equation (12), if for
any η0 ∈ ILL2 the solution of problem (12), (13) is η ∈ C

1(R; ILL2).

Note that if equation (12) has phase space PLL2 and invariant space ILL2, then
ILL2 ⊂ PLL2.

Definition 7. Solution η = η(t) of equation (12) has exponential dichotomy, if
(i) phase space PLL2 of equation (12) splits into a direct sum of two invariant spaces

(i.e. PLL2 = I
+
LL2 ⊕ I

−
LL2), and

(ii) there exist constants Nk ∈ R+, νk ∈ R+, k = 1, 2, such that

‖η1(t)‖U ≤ N1e
−ν1(s−t)‖η1(s)‖U for s ≥ t,

‖η2(t)‖U ≤ N2e
−ν2(s−t)‖η2(s)‖U for t ≥ s,

where η1 = η1(t) ∈ I
+
LL2 and η2 = η2(t) ∈ I

−
LL2 for all t ∈ R. Space I

+
LL2 (I−LL2) is called

the stable (unstable) invariant space of equation (12).
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Theorem 5. Let M be (L, p)-bounded operator, p ∈ {0} ∪ N, and σL(M)
⋂

{iR} = ∅.
Then solution η = η(t) of equation (12) has exponential dichotomy.

Let us give an idea of the proof. In order to define projectors in the space of random
L-variables ULL2, we use formulas

P1 =
1

2πi

∫

Γ1

RL
µ(M)dµ ∈ L(ULL2), P2 =

1

2πi

∫

Γ2

RL
µ(M)dµ ∈ L(ULL2),

where contour Γ1 (Γ2) belongs to the left (right) half-plane of the complex plane and
bounds a part of L-spectrum of operator M

σL(M)
⋂

{µ : Reµ < 0} (σL(M)
⋂

{µ : Reµ > 0}).

Set I
+
LL2 = imP1 and I

−
LL2 = imP2. Obviously, U1

LL2 = I
+
LL2 ⊕ I

−
LL2. Let η1 ∈ I

+
LL2. If

s ≥ t, then

‖η1(t)‖U ≤ e−ν1(s−t) 1

2π

∫

Γ′
1

|RL
τ (M)| |eτ(s−t)| |dτ | ‖η1(s)‖U ≤ e−ν1(s−t)N1‖η

1(s)‖U,

where τ = µ+ ν1, and Reτ > 0, τ ∈ Γ′
1. The estimate for η2 ∈ I

−
LL2 is obtained similarly.

3. Exponential Dichotomies of the Barenblatt–Zheltov–Kochina

Stochastic Equation in Spaces of Differential Forms

Let Ωn be a n-dimensional smooth compact oriented connected Riemannian manifold
without boundary, and Eq = Eq(Ωn), 0 ≤ q ≤ n be a space of differential q-forms on Ωn.
In particular, E0(Rn) is a space of functions of n variables. Consider Laplace–Beltrami
operator ∆ : Eq → Eq, defined by equality ∆ = δd + dδ, where d : Eq → Eq+1 is
the operator of external differential from differential forms, and δ : Eq → Eq−1 can
be presented as linear Hodge operator δ = (−1)n(q+1)+1 ∗ d∗, ∗ : Eq → En−q, which
associates a q-form on Ωn with (n − q)-form. Denote the space of harmonic q-forms by
Hq = {ω ∈ Eq : ∆ω = 0}.

It follows from the Hodge decomposition (see, for example, in [9])

Eq = ∆(Eq)⊕Hq = dδ(Eq)⊕ δd(Eq)⊕Hq (14)

that equation ∆ω = α has solution ω ∈ Eq, if a q-form α is orthogonal to space of harmonic
forms Hq.

Define scalar product in space Eq, q = 0, 1, . . . , n, by formula

(ξ, η)0 =

∫

Ωn

ξ ∧ ∗η, ξ, η ∈ Eq, (15)

where ∗ is the Hodge operator, and denote the corresponding norm by || · ||0. Continue

scalar product (15) to direct sum
n

⊕
q=0

Eq, such that different spaces Eq are orthogonal. Let
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H
q
0 be a completion of space Eq by norm || · ||0, and Pq∆ be an orthoprojector on H

q
∆.

Introduce the scalar product on Eq by formulas

(ξ, η)1 = (∆ξ, η)0 + (ξ∆, η∆)0, (16)

(ξ, η)2 = (∆ξ,∆η)0 + (ξ, η)1, (17)

where ω∆ = Pq∆ω. Let Hq
1 and H

q
2 be completions of lineal Eq by corresponding norms ||·||1

and || · ||2, respectively. In fact, sub index means how many times q-forms are differentiable
in generalized sense in the corresponding spaces. Spaces H

q
l , l = 1, 2, are Banach spaces

(their Hilbert structure does not interest us further), moreover, there exist continuous and
dense embeddings H

q
2 ⊂ H

q
1 ⊂ H

q
0, and for any q = 0, 1, . . . , n their exist the splittings of

spaces
H

q
l = H

q1
l∆ ⊕ H

q
∆,

where H
q1
l∆ = (I− P∆)[H

q
l ], l = 0, 1, 2.

Define spaces H
q
2L2 of smooth differential q-forms

w(t, x1, x2, ..., xn) =
∑

|i1,i2,...,iq|=q

χi1,i2,...,iq(t, x1, x2, ..., xn)dxi1 ∧ dxi2 ∧ ... ∧ dxin ,

where coefficients χi1,i2,...,iq(t, x1, x2, ..., xn) ∈ C
1(R;ULL2) are stochastic L-processes, and

xi are one-dimensional Brownian processes. We can separate time and local coordinates at
non-relativistic speeds. Here time t is the same at all points of the manifold and impacts
only on the coefficients of differential forms that are stochastic continuous L-processes
differentiable in the sense of Nelson–Gliklikh.

For fixed α ∈ R, λ ∈ R introduce operators

L = (λ+∆), M = α∆, (18)

where ∆ is the Laplace–Beltrami operator. Consider a stochastic equation with differential
forms

L
o
η=Mη (19)

with Cauchy condition
η(0) = η0. (20)

Paper [8] establishes solvability of problem (19), (20). Introduce

I
+
LL2 = {η ∈ H

q
2L2 : (·, ϕl)0ϕl = 0, νl > λ} , (21)

and
I
−
LL2 = {η ∈ H

q
2L2 : (·, ϕl)0ϕl = 0, νl < λ} . (22)

The following theorem is true.

Theorem 6. For any α ∈ R, λ ∈ R+, η0 ∈ ULL2, solution η = η(t) of problem
(19), (20) has exponential dichotomies, and I

+
LL2 and I

−
LL2 of form (21), (22) are

infinite-dimensional stable and finite-dimensional unstable invariant spaces of equation
(19), respectively.

Remark 1. For any α ∈ R−, λ ∈ R+ and η0 ∈ ULL2, solution η = η(t) of problem (19),
(20) has exponential dichotomies, and there exist finite-dimensional stable and infinite-
dimensional unstable invariant spaces of equation (19). For any α ∈ R+ and λ ∈ R− we can
only talk about exponential stability of solutions of problem (19), (20), and the solutions
of problem (19), (20) are exponentially unstable for α, λ ∈ R−.
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Conclusion

Further, we plan to continue the results of the paper in several directions. Namely,
to generalize the results for the case of sectorial operator [5] and even more general
case of radial operator [6]. Also, to investigate generalized Showalter–Sidorov problem,
and multipoint problem [22]. Moreover, the theory of degenerate resolving groups and
semigroups of operators, as well as numerical methods [23], require such a research.
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ЭКСПОНЕНЦИАЛЬНЫЕ ДИХОТОМИИ В МОДЕЛИ БАРЕНБЛАТТА
– ЖЕЛТОВА – КОЧИНОЙ В ПРОСТРАНСТВАХ
ДИФФЕРЕНЦИАЛЬНЫХ ФОРМ С ≪ШУМАМИ≫

О.Г. Китаева1, Д.Е. Шафранов1, Г.А. Свиридюк1

1Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

Исследована устойчивость решений в линейных стохастических моделях соболев-

ского типа с относительно ограниченным оператором в пространствах гладких диф-

ференциальных форм, определенных на гладких компактных ориентированных рима-

новых многообразиях без края. Для этого в пространстве дифференциальных форм

используем вместо обычного оператора Лапласа псевдодифференциальный оператор

Лапласа – Бельтрами. В качестве начальных использованы условие Коши и условие

Шоуолтера – Сидорова. В связи с недифферинцируемостью, в обычном понимании,

имеющегося в модели ≪белого шума≫ используем производную стохастического про-

цесса в смысле Нельсона – Гликлиха. Для исследования устойчивости решений уста-

навливаем наличие экспоненциальных дихотомий разделяющих пространство решений

на устойчивое и неустойчивое инвариантные подпространства. В качестве примера ис-

пользуется стохастический вариант уравнения Баренблатта – Желтова – Кочиной в

пространстве дифференциальных форм, определенных на гладком компактном ори-

ентированном римановом многообразии без края.

Ключевые слова: уравнения соболевского типа; дифференциальные формы; сто-

хастические уравнения; производная Нельсона – Гликлиха.
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