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We investigate stability of solutions in linear stochastic Sobolev type models with
the relatively bounded operator in spaces of smooth differential forms defined on smooth
compact oriented Riemannian manifolds without boundary. To this end, in the space of
differential forms, we use the pseudo-differential Laplace—Beltrami operator instead of the
usual Laplace operator. The Cauchy condition and the Showalter—Sidorov condition are used
as the initial conditions. Since “white noise” of the model is non-differentiable in the usual
sense, we use the derivative of stochastic process in the sense of Nelson—Gliklikh. In order to
investigate stability of solutions, we establish existence of exponential dichotomies dividing
the space of solutions into stable and unstable invariant subspaces. As an example, we use
a stochastic version of the Barenblatt—Zheltov—Kochina equation in the space of differential
forms defined on a smooth compact oriented Riemannian manifold without boundary.

Keywords: Sobolev type equations; differential forms; stochastic equations; Nelson—
Gliklikh derivative.
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Introduction

The Barenblatt—Zheltov—Kochina equation
AN=A)i=aAu+ f (1)

simulates dynamics of pressure of a liquid filtered in a fractured—porous medium.
Parameters a and X are real and characterize the environment and properties of the liquid,
respectively, and function f = f(z) plays the role of an external influence.

The study of solvability of the initial-boundary value problems for equation (1) in
Banach spaces with the Cauchy condition is based on the approach described, for example,
in [1], where this equation is reduced to abstract linear Sobolev type equation

Li=Mu+ f (2)

in suitable function spaces 4l and §. Paper [2] considers splitting of similar spaces and
splitting of the action of elliptic operators in spaces of smooth differential forms defined
on smooth Riemannian manifolds without boundary.

Further, paper [3] considers stochastic equations of Sobolev type

L7N= Mn+ Nw, (3)
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where 1 = 7(t) is a stochastic process, 7 is the Nelson-Gliklikh derivative of process 4],
w = w(t) is a stochastic process that corresponds to an external influence; L, M, N €
L(4;§) are operators, and operator M is (L, p)-bounded, p € {0} U N. Paper [5] shows
the results of studying equation (3) in the case when operator M is (L, p)-sectorial, p €
{0} UN. Then, paper [6] considers equation (3) in the case when operator M is (L, p)-
radial, p € {0} |JN. Note that all three papers [3,5,6] along with classical Cauchy problem

1(0) = 1o (4)

consider Showalter—Sidorov problem

P(n(0) = no) = 0. (5)

Paper |7] considers more general initial-finite conditions for equation (3), and paper [§]
investigates the Cauchy and Showalter—Sidorov problems posed for the Sobolev type
equation of high order.

The stochastic Barenblatt—Zheltov—Kochina model with additive “white noise” given
in a bounded domain is considered as a concrete interpretation of abstract stochastic
equation (3) in [3] and is transferred to a Riemannian manifold without boundary in [9].
Paper [10] was the first to consider the dichotomies of solutions to abstract homogeneous
Sobolev type equation

Li = Mu, (6)

where operator M is (L, p)-bounded, p € {0} |N.
The paper is devoted to the study of dichotomy of solutions to abstract homogeneous
stochastic Sobolev type equation

L 7= Mn, (7)

where operator M is (L,p)-bounded, p € {0}|N. The Barenblatt—Zheltov—Kochina
stochastic equation given on a Riemannian manifold without boundary is considered as a
specific model.

Note also other approaches to the study of groups and semigroups of stochastic
equations, for example, proposed in [11] or in [12-14].

The paper, in addition to the introduction, conclusion and bibliography, contains
three sections. In the first section, we introduce the terminology of linear Sobolev type
equations, including the terminology related to stability, and the main theorems proved
in other papers. The second section describes a stochastic analogue of the Barenblatt—
Zheltov—Kochina equation in specially selected spaces. The third section gives the main
result on existence of exponential dichotomies of solutions to the equations. The conclusion
presents several directions for further research. Note also that the bibliography does not
pretend to be complete, but reflects only the personal preferences of the authors.

1. Dichotomies of Solutions to Equations in Banach Spaces

Let & and § be Banach spaces, and operators L, M € L({;§). Consider L-resolvent
set pl(M) = {ueC: (uL — M)™' € L(F;U)} and L-spectrum o*(M) = C\ p*(M) of
operator M. If L-spectrum o*(M) of operator M is bounded, then operator M is called
(L, o)-bounded. If operator M is (L, o)-bounded, then there exist projectors
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P= QLM Ri(M)dp € L(&)), Q= %/Lﬁ(l\/[)du c L(T).
Y vy
Here R(M) = (uL — M)~'L and L/;(M) = L(uL — M)~" are the right and the left
L-resolvents of operator M, respectively, and closed loop v € C bounds the domain
containing o*(M). Set 4° (U') = ker P (imP), F° (F') = ker@ (im@Q). Denote the
restriction of operator L (M) to U* by L, (M), k=0, 1.

Theorem 1. [1, Ch.3| Let M be (L, o)-bounded operator, then
(i) operators Ly (My) € L(UF;FF), k=0,1;
(ii) there exist operators Myt € L(F*;U°) and L7t € L(F';uUb).

Corollary 1. Let M be (L,o)-bounded operator, then
(WL — M) = =3 phSULIQ+ S M (1 - Q),
k=0 k=1

where operator H = Ly My € L(U°), S = Ly M, € L(Y).

Further, (L,o)-bounded operator M is called (L,p)-bounded, p € {0} UN, if
oo is a removable singular point (H = O, p = 0) or a pole of order p € N
(i.e. H? # Q, HP™ = Q) of L-resolvents (uL — M)~ of operator M. We consider
vector function u € C(R; i) as a solution of equation (6), if u substituted to equation (6)
makes (6) true. Solution u = u(t) of equation (6) is called a solution of Cauchy problem

u(0) = ug (8)
for equation (6), if equality (8) holds for some ug € 4l

Definition 1. Set P C U is called a phase space of equation (6), if

(i) any solution u = u(t) to equation (6) belongs to P pointwise, i.e. u(t) € B for all
teR;

(ii) for any ug € P there exists unique solution u € C*(R;Y) of Cauchy problem (8)
of equation (6).

Theorem 2. [1, Ch.3] Let M be (L, p)-bounded operator, p € {0} UN. Then phase space
of equation (6) is the subspace L'

Note that if there exists operator L™! € L£(F; ), then phase space of equation (6) is
space il

Definition 2. [10] Subspace J C U is called an invariant space of equation (6), if for any
ug € J the solution of problem (6), (8) is u € C*(R; 7).

Note that if equation (6) has phase space B, then any its invariant space J C .

Definition 3. [10| Solution u = u(t) of equation (6) has exponential dichotomy , if

(i) phase space P of equation (6) splits into a direct sum of two invariant spaces (i.e.
P=J"®J ), and

(11) there exist constants N € Ry, v, € Ry, k =1,2, such that
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[ (®) s € Nie 60l ()] for s>t
[?(t)[lu < Noe™ 26D u(s)[la  for t>s,

where u' = u'(t) € J* and u? = v*(t) € I~ for any t € R. Space J*(J) is called stable
(unstable) invariant space of equation (6). And if J* =B (I~ = B), then stationary
solution of equation (6) is stable (unstable).

Theorem 3. [10] Let M be (L, p)-bounded operator, p € {0} UN, and o(M) N{iR} = 0.
Then solution w = u(t) of equation (6) has exponential dichotomy.

2. Dichotomies of Solutions of Equations in Spaces
of Differentiable “Noises”

Let 2 = (92, A, P) be a full probability space, R be set of real numbers endowed with
the Borel o-algebra. Measurable mapping & : 2 — R is called a random variable. A set
of random variables having zero expectation (E{ = 0) and finite dispersion forms Hilbert
space Ly with scalar product (&1,&) = E& €. Let A be a o-subalgebra of o-algebra A.
Construct subspace Lg C Ly of random variables measurable with respect to Agy. Denote
the orthoprojector by IT : Ly — L9. Let £ € Ly, then II€ is called a conditional expectation
of the random variable £, and is denoted by E(£|.Ay).

Consider set J C R and the following two mappings. First, f : J — Ly, associates each
t € J with random variable £ € La. Second, g : Ly x 2 — R, associates each pair (§,w)
with point {(w) € R. The mapping 7 : R x 2 — R having form n = n(t,w) = g(f(t),w) is
called (one—dimensional) stochastic process. Therefore, stochastic process n = n(t,-) is a
random variable for each fixed ¢ € J, i.e. n(t,-) € Ly, and stochastic process n = n(-,w) is
called a (sample) path for each fixed w € Q). Stochastic process 7 is called continuous, if all
its paths are almost sure continuous (i.e. at almost all w € € paths 7(-,w) are continuous).
The set of continuous stochastic processes form a Banach space, which we denote by CLs.
Fix n € CLy and ¢ € J, and denote by N, the o-algebra generated by a random variable
n(t). For brevity, E] = E(-|N;").

Definition 4. Let n € CLay. A random variable

ﬁzg(&& @(n<t+m,~>—n<t,->>+ . w(n(t,-)—n(t—&w)»

At At

is called Nelson-Gliklikh derivative 1 of the stochastic process m at point t € J, if the
limits exist in the sense of the uniform metric on R.

Let C'Ly, | € N, be a space of stochastic processes whose paths are almost sure
differentiable in the sense of the Nelson—Gliklikh derivative on J up to order [ inclusively.
Spaces C'Ly are called the spaces of differentiable “noises”. Let 3 = {0} UR,, then a
well-known example [3,5] of a vector of space C'L, is given by a stochastic process that
describes the Brownian motion in Einstein—Smoluchowski model

where independent random variables &, € Ly are such that dispersion D&, = [5(2k+1)]72,
k € {0} UN. As shown in [4], E (t) =29 t e R,.

2t
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Now let 4 (F) be a real separable Hilbert space with orthonormal basis {¢ } ({9 })-
Denote by UpLs (FpyLs) the Hilbert space, which is a completion of the linear span of
random L-variables

n=> Murbepr (W= pufelrtn) 9)
k=1 k=1
by the norm
Inlle = MuiDé  (|lwlz = ZuifszCk)-

k=1
Here sequence L = {\;} C Ry (M = {u} C Ry) is such that Z A7 < 400 (Z i + 00),

{ur} ({fr}) is a sequence of coefficients of vector u € U (f E 5) expansmn by basis
{er} {¥r}), and {&} C Ly ({¢x} C Lo) is a sequence of random variables. Note that for
existence of a random L-variable n € UpLy (w € FpLo) it is enough to consider a sequence
of random variables {£,.} C Lo ({(x} C Ls) having uniformly bounded dispersions, i.e.
D¢y < const, k € N (D(, < const, k € N).

Next, consider interval J = (¢,7) C R. Mapping 7 : (¢,7) — ULy given by formula

= Z Mot (t) o, (10)
k=1

where {£,} C CLjy is a sequence, is called U-valued continuous stochastic L-process, if the
series on the right-hand side converges uniformly on any compact in J by norm || - ||u,
and paths of process = 7(t) are almost sure continuous. Continuous stochastic L-process
n =n(t) is called continuously Nelson—Gliklikh differentiable on J, if series

1= e & (Do (11)
k=1

converges uniformly on any compact in J by norm || - ||, and paths of process 1=1) (t) are
almost sure continuous. Let C(J, UgLsy) be a space of continuous stochastic L-processes,
and C!(J,ULLsy) be a space of continuously differentiable up to order [ € N stochastic
L-processes. An example of a stochastic L-process, which is continuously differentiable up
to any order [ € N inclusively, is Wiener L-process [3, 5|

1) =Y MBi(t)en,
k=1

where {8} C C!'Ly is a sequence of Brownian motions on R,. Similarly, spaces
C(J3,FmL;) and CH(J,FypL,), | € N, are constructed. Note also that spaces
CiLy, C(3,ULLy) and CYJ,FymLs), | € N, are called the spaces of differentiable L-
“noises” (3.

Consider an operator A €  L(WF). It is clear that the same
operator A € L(UygLsy; FpLg). Moreover, there exists the following lemma holds.

Lemma 1. Let operators L, M € L(U;F), where operator M is (L,p)-
bounded, p € {0} U N. Then operator M € L(UgLs;FnmLs) is also (L,p)-bounded,
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p € {0} UN, where operator L € L(UgLy; FyLs). Moreover, L-spectrum of operator
M € L F) coincides with L-spectrum of operator M € L(UygLs; FyLs).

The interested reader is encouraged to prove this statement. According to Lemma
2.1, all results of section 1 are transferred from Banach spaces to spaces of differentiable
L-“noises”.

Let operators L, M € L£(UyLy; FymLs). Consider equation

L 1= Mn. (12)

Stochastic L-process n € C'(R; UyLy) is called a solution of equation (12), if n substituted
to equation (12) makes (12) true. Solution 1 = 7n(t) of equation (12) is called a solution of
Cauchy problem

1(0) = no, (13)

for equation (12), if equality (13) holds for some random L-variable 1y € UgLs.

Definition 5. Set P1Ly C ULy is called a stochastic phase space of equation (12), if
(i) almost surely each path of solution n = n(t) of equation (12) belong to PrLy, i.c.
n(t) € PrLs,t € R for almost all paths;
(ii) there exists the wunique solution of problem (12), (13) for almost all
paths ng € PyLs.

Since the solution of problem (12), (13) is a stochastic L-process, and only one of its
paths is observed in reality, we consider necessary to make an explanation. Recall [5-7]
that stochastic L-processes n = n(t) and ( = ((¢) are considered equal, if almost surely
each path of one of them coincides with any path of the other. Next, extend projector P
of section 1 from Banach space i to the space of random L-variables UgLs. It is easy to
show that operator P € L(UpLy) is also a projector. Set UYLy = ker P, U;Ly = imP
such that ULy, = UYL, & Uj L.

Theorem 4. Let operators L, M € L(UgLs; FyLo), where operator M is (L, p)-bounded.
Then phase space of equation (12) is space Uj Ly.

Note that if there exists operator L™! € £(FpLy; UpLy), then Ui Ly = UgLs.

Definition 6. Subspace IpLs C UL, is called an invariant space of equation (12), if for
any no € IpLy the solution of problem (12), (13) is n € CY(R; Iy Ly).

Note that if equation (12) has phase space PrLy and invariant space IpLo, then
IpL, C PyL,.

Definition 7. Solution n = n(t) of equation (12) has exponential dichotomy, if

(i) phase space P1Ly of equation (12) splits into a direct sum of two invariant spaces
(Ze PLL2 = IILQ ) IELQ), and

(i) there exist constants Ny € Ry, v, € Ry, k=1,2, such that

In')lv < NieCDn(s)lv - for s>t
Pl < Nee2C I (s)llw - for  t=>s,

where n* = n'(t) € If Ly and n* = n?(t) € IgLy for all t € R. Space If Ly (I; Ly) is called
the stable (unstable) invariant space of equation (12).
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Theorem 5. Let M be (L,p)-bounded operator, p € {0} UN, and o*(M)N{iR} = 0.
Then solution n = n(t) of equation (12) has exponential dichotomy.

Let us give an idea of the proof. In order to define projectors in the space of random
L-variables Uy L,, we use formulas

1 I 1 L
Pl = 2—7” RM (M)d,u € E(ULLQ), P2 = 2—7” RM (M)d,u/ S E(ULLQ)a
I T2

where contour T'; (I's) belongs to the left (right) half-plane of the complex plane and
bounds a part of L-spectrum of operator M

o"(M)(V{w: Rep < 0} (o"(M) ([ : Rep > 0}).

Set IELQ = imP; and I Ly, = imP,. Obviously, UL, = IELQ @ I Ly. Let nt e I;:LQ. If
s > t, then

—v1(s— 1 T(s5— —v1(s—
I @) < 00 1RO 0] far] I (s) o < Nl (s o

I

where 7 = p+ v, and Rer > 0, 7 € I'}. The estimate for n* € Iy Ly is obtained similarly.

3. Exponential Dichotomies of the Barenblatt—Zheltov—Kochina
Stochastic Equation in Spaces of Differential Forms

Let ©,, be a n-dimensional smooth compact oriented connected Riemannian manifold
without boundary, and E? = E4(€,,),0 < ¢ < n be a space of differential ¢g-forms on €2,,.
In particular, E°(R") is a space of functions of n variables. Consider Laplace—Beltrami
operator A : E? — E9 defined by equality A = dd + dd, where d : B4 — EI! is
the operator of external differential from differential forms, and § : B¢ — E%! can
be presented as linear Hodge operator § = (—1)”(51+1)Jrl x dx, x : K1 — E" 9 which
associates a g-form on (2, with (n — ¢)-form. Denote the space of harmonic g-forms by
H1={we E?: Aw = 0}.

It follows from the Hodge decomposition (see, for example, in [9])

EY = A(E?) & HY = d§(E") & 6d(E?) & H* (14)

that equation Aw = « has solution w € EY, if a ¢-form « is orthogonal to space of harmonic
forms HY.

Define scalar product in space F?, ¢ =0,1,...,n, by formula
€mo= [€nm Ene b (15)
Qn
where * is the Hodge operator, and denote the corresponding norm by || - ||o. Continue

scalar product (15) to direct sum GHB FE4, such that different spaces E? are orthogonal. Let
q=0
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¢ be a completion of space E? by norm || - ||o, and P,a be an orthoprojector on $H%.
Introduce the scalar product on F? by formulas

(€ m)1 = (A&, m)o + (§asma)o, (16)
(&77])2 = (Afv An)o + (£77])17 (17>

where wa = P,aw. Let $ and $2 be completions of lineal E4 by corresponding norms ||-||1
and ||-||2, respectively. In fact, sub index means how many times ¢-forms are differentiable
in generalized sense in the corresponding spaces. Spaces $)7, [ = 1,2, are Banach spaces
(their Hilbert structure does not interest us further), moreover, there exist continuous and
dense embeddings $H2 C H C H{, and for any ¢ = 0,1,...,n their exist the splittings of
spaces
Hi = Hiy ® HA,
where /A = (I — Pa)[$7], 1 =0,1,2.
Define spaces $3L5 of smooth differential g-forms

w(t,x1, Ta, ..., Tp) = Z Xitsizseonsiq (b 1, T2y ooy T ) Ay, A dwgy A A day,,,

|i17i27~~~7iq‘:q

where coefficients x;, ,,...., (t, 21, Z2, ..., ) € C'(R; UrLy) are stochastic L-processes, and
x; are one-dimensional Brownian processes. We can separate time and local coordinates at
non-relativistic speeds. Here time ¢ is the same at all points of the manifold and impacts
only on the coefficients of differential forms that are stochastic continuous L-processes
differentiable in the sense of Nelson—Gliklikh.

For fixed o € R, A € R introduce operators

L=(M+A), M=aA, (18)

where A is the Laplace—Beltrami operator. Consider a stochastic equation with differential
forms

L = Mn (19)
with Cauchy condition
1(0) = 1o (20)
Paper [8| establishes solvability of problem (19), (20). Introduce
IfLy = {n € H3L2 : (. p)opr = 0,1 > A}, (21)
and
I;Ly = {n € H3L2: (-, p1)op1 = 0,11 < A}. (22)

The following theorem is true.

Theorem 6. For any a € R, A\ € Ry, 1y € UpLy, solution n = n(t) of problem
(19), (20) has exponential dichotomies, and IfLs and IyLa of form (21), (22) are
infinite-dimensional stable and finite-dimensional unstable invariant spaces of equation
(19), respectively.

Remark 1. For any a« € R_, A € R, and 7y € ULy, solution 7 = 7(t) of problem (19),
(20) has exponential dichotomies, and there exist finite-dimensional stable and infinite-
dimensional unstable invariant spaces of equation (19). For any o € R, and A € R_ we can
only talk about exponential stability of solutions of problem (19), (20), and the solutions
of problem (19), (20) are exponentially unstable for a, A € R_.
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Conclusion

Further, we plan to continue the results of the paper in several directions. Namely,

to generalize the results for the case of sectorial operator [5] and even more general
case of radial operator [6]. Also, to investigate generalized Showalter—Sidorov problem,
and multipoint problem [22]. Moreover, the theory of degenerate resolving groups and
semigroups of operators, as well as numerical methods [23], require such a research.
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9KCIIOHEHIIMAJIBHBIE /INXOTOMUUN B MOJAEJIN BAPEHBJIATTA
—~ 2KEJITOBA - KOUNHOM B IIPOCTPAHCTBAX
ANOPOEPEHIIMAJIBHBIX ®OPM C <IITYMAMMW >

O.T. Kumaesa', /I.E. Illagpparos', IA. Ceupudrox'
Oxm0- Y pasbeKkuii rocy1apeTBeHHbIH YHNBEPCHTET, T. JeIa0mHCK,
Poccniickas @enepariust

UccnenoBana ycToMUIUBOCTD PEIIEHUI B JIMHEHHBIX CTOXACTUIECKUX MOJEIISIX CODOJIEB-
CKOT'O THUIA C OTHOCHUTEJIHLHO OTPAHMYEHHBIM ONEPATOPOM B MPOCTPAHCTBAX TJIAJKUX (D~
depeHnraabHBIX (POPM, OIIPEJIEJIEHHBIX Ha IVIAJIKIX KOMIAKTHBIX OPUEHTUPOBAHHBIX PUMa~
HOBBIX MHOTOOOpa3usix 6e3 Kpas. st 3T0or0 B mpocrpancrse auddepeHnuaibHbx (HGopM
HCIOJIB3YEeM BMECTO OObIYHOrO orneparopa Jlamraca rcesnomuddepeHuaibHbIil onepaTop
Jlammaca — Besnbrpamu. B KadecTBe HAYAJIBHBIX HCIIOJIB30BAHBI ycjoBue Komu n yciaoBue
[MToyoarepa — Cumoposa. B cBsi3u ¢ mHenuddepuHIIPyeMOCTbIO, B OOBITHOM TOHUMAHWH,
UMEIOIIErocsl B MOJIESIN <0eJIoro MyMas UCIOJIb3YeM MPOU3BOIHYIO0 CTOXACTUIECKOTO TPO-
necca B cMbiciie Henbcona — [imkimxa. Jljis ucciieioBadust yCTONYNBOCTH PeIeHuit ycTa-
HABJINBAEM HaJININe SKCIIOHEHINAJBHBIX JUXOTOMUIN Pa3/Ie/IsoNUX POCTPAHCTBO PEIeHMA
HA YCTOWYINBOE U HEYCTOWINBOE HHBAPUAHTHBIE MOIIPOCTPAHCTBA. B KauecTBe mpuMepa nuc-
MTOJIb3YEeTCsT CTOXACTUIeCKMit BapuanT ypasuenus bapenbsarta — 2Kenrosa — Kounnoit B
npocrpancTee auddepeHnuagbubix GOPM, OMPEIEIEHHBIX HA TJIAJKOM KOMIIAKTHOM OpH-
E€HTUPOBAHHOM PUMAHOBOM MHOI00Opa3uu 6e3 Kpasi.

Karoueswie caosa: ypasrenusn coboaesckozo muna; duddeperyuaivrvie Gopmos; cmo-

racmuvecrue YypaBHEHUA, npouseoc?%a.ﬂ Heavcorna — Inuxauxa.
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