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We consider a problem on the image processing and computer vision. A wide range of
methods allows to solve problems of this type. The methods of partial differential equations
are the most useful and interesting ones. A non-linear diffusion takes special place in
these studies. In this context, fundamental theoretical foundation is a central part of this
approach. Therefore, we introduce a new functional class of spaces, formulate and prove the
lemma on the equivalent norms in anisotropic Stepanov spaces. Another important result
of this study is the lemma that the anisotropic Stepanov spaces are Banach. In addition, we
obtain the theorem on the solvability of the equation of anisotropic diffusion in anisotropic
Stepanov spaces. The results can be applied to the image processing and computer vision.
Also, the obtained results open the new view to this problem.
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Introduction

As is known, partial differential equations (PDEs) have led to an entire new field
in image processing and computer vision [1, 2|. The PDE-based methods play a central
role in hundreds of papers published during the last decade, and are discussed in several
conferences and workshops. The success of this method is not really surprising, since PDEs
have proved their usefulness in several areas such as physics and engineering sciences
during a very long time. A non-linear diffusion takes a special place in these studies. Note
a method of this type proposed by Perona and Malik in 1987 [3]. In order to smooth an
image and, simultaneously, to enhance important features such as edges, Perona and Malik
apply a diffusion process, where diffusivity is controlled by derivatives of the formed image.
These filters are difficult to analyse mathematically, because the filters should act locally
like an inverse diffusion process. This gives rise to issues on well-posedness. On the other
hand, non-linear diffusion is widespread method with very effective results. Therefore, this
method needs for a theoretical foundation. We consider a new class of functions, which
opens a new view to this issues. This class is formed by the anisotropic Stepanov spaces.
The proofs of some statements for these classes are based on non-linear analysis of partial
differential equations and functionals.

1. Preliminaries on Mean Derivatives

Let p = (p1,...,pn) and [ = (Iy,...,1,) be vectors with coordinates 1 < p; < oo,
0 <l; < oo, where ¢ =1,...,n. Consider the parallelepiped I; = [}, x --- x I;, C R" with
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the edges [}, = {z; : 0 < x; < [;}. Following Nikol’skii [4, p. 9; 5, p. 30|, by Lz(I;) we
denote the space of measurable functions f(x) = f(x1,...,2,) on I; such that the norm

=3[ 1) </

is finite. Note importance of the order in which the norms are taken with respect to
different variables. If p; =p (i = 1,...,n), then | f|p 1. = || fllp.z-

The spaces L;(1;) are called the Lj-anisotropic Nikol’skii spaces. As is known, these
spaces are Banach with norm (1). Nikol’skii began the study of these spaces in relation to
the theorems on embeddings of spaces of functions having generally different behavior in
different directions. If norm (1) is considered for functions defined on unbounded sets, in
particular, on the entire space R", then the corresponding anisotropic Nikol’skii spaces lose
many important properties, such as embedding properties with respect to the parameter
D, existence of important classes of bounded functions, etc.

Therefore, there is an interest in extension of classes of such spaces under which these
properties are preserved. From this point of view, the Stepanov spaces Sp(ﬁn) 6, p. 110;
7, p. 40] of locally integrable functions with the norm

Pn

1
P
P2 3 Pn—1 pn

|f(x)|p1dx1> 1 dxs . dxz,, (1)

n 2 1

1£ls,. = sup [ / \f(m%)pdx} " = sup 1T o, 1 @)

teR™ teR™

are the spaces closest to the anisotropic Nikol’skii spaces. In order to investigate various
properties of such functions with respect to different variables by Nikol’skii approach, we
introduce the anisotropic Stepanov spaces 557 as the sets of locally integrable functions
on R™ with the norm
1f1ls,; = sup |T@) |l gz (3)
TR
Obviously, these sets of functions form normed linear spaces. Moreover, in this article,
we consider the question on the close relationship between such spaces and anisotropic
Nikol’skii spaces, as well as the problem on solvability of anisotropic diffusion in these
spaces.

2. Main Result

Asis known [6, p. 99|, various equivalent norms can be defined on the classical Stepanov
spaces Sp(IR™). The same is true for the spaces S ;.

Lemma 1. Norms (3), corresponding to different - (z§1), ce lq(zl)), are equivalent.

Proof. Suppose that | = (l3,...,l,), lo = maxl; and o= (loy - - 1o)-

1<i<n
Let  us  show that the norms |flls, and |f Hgﬂo are  equivalent.

On the one hand, we have

Pl

I1£ls,, < I£1ls,. - (4)
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On the other hand, suppose that Iy = m;l; + ©;, where 0 < ©; < 1 and m; are positive

integers. Then we have ) n
pa p3 ﬁ Pn
lo lo P1 P2
/ / /\f x+ )PP dry | dao dx,, <
0 0
Pn L
P2 P3 Pn—1 pn
(mn+1)ln (ma+1)l2 / (m1+1)l1 P1 bz
< / / / Fa+DPde | deb | de b =
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where kl = > kil;.
i=1
Apply the inequalities

and obtain
1T\l 7., < C(p, )%

sz—o Z{/Ol".../ob (/Oh\f(x+z+m)\mdxl)p

3
=N
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8
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—
s
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where m = (myq, ..., m,). Take the supremum over ¢ € R™ and obtain the inequality
[f1ls,,, < C@m) - I flls,;- (7)
The statement of the lemma follows from (4) and (7). O
Based on the results of Lemma 1, we assume that [ = (1,..., 1) and consider the norm

[flls,;- Let K be the unit cube 0 <z; <1, (1 =1,...,n), and Kz be the cube K shifted
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by the vector m. Therefore, K () K7 = 0, if m # 7 and |J Kz = R™. In the spaces S 1,

m
we use the cover of R” by the cubes K in order to define the equivalent norm on the
spaces S; 1 as follows:

1550 = sup [1f 1] 2; e (8)

Indeed, on the one hand,
[flls50 < [1flls, +- (9)

In order to prove the reverse inequality, we use (6) and obtain

T2/l 25 < C(p,m) %

/[t2]+2
[t2]

In (10), we represent the corresponding integrals as

/[t1+2] / [ti+1] / [ti+2]
[t:] [tz]+1

where i = 1,...,n, once more use (6), take the supremum over ¢ € R”, and obtain

1flls,; < C@,m) - || f]] 550 (11)

Pl

P2 oo

[t1]+1 e P1
/ Fla+F)Pdey | ode s . (10)

[t1]

xzz/

kn=0 k1= [tn]

The statement follows from (9) and (11). Hence, since the spaces L, are separable on each
cube Ky, then the spaces Sp are separable and, therefore, the spaces 57 are separable.

Lemma 2. The spaces S;; are Banach.

Proof. The proof is based on the following fact about vector-valued function defined on
some abstract set and taking values in the Banach space E. This fact was developed by
Hille and Phillips [8, p. 103|. If f(o) is strongly measurable on & and || f(o)|| g is bounded
everywhere except for some set having zero measure, then the space L. (o, E) is Banach
with the norm ||f|lo = [|f(o)|lg. If ||f(0)||g is continuous, then ||f|| = sup||f(o)|| and

oed
Lo (0, E) becomes C(o, E). The statement of Lemma 2 follows from this statement, if

E = L;; and & = R", since the spaces L;; are complete.

O
Let K]' C R"™ be the cube with the edges 0 < z; <[, and Kfl be the cube K' shifted

by the vector t = (ti,...,t,). Consider the biconvex functional
Bi(f,g) = sup f@+1)g(T+1t)dz| = sup f(z)g(r)dz (12)

terR™ |J K teR? n

The functional By(f,g) is finite, if f € Sp;, g € Sy ;. The proof of this statement is based
on the Holder inequality for the norms on L,(2) and L, (€2) [1, p. 19]:

<[ fllz, - llgllz, x;)- (13)

[ @@z
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Hence, take supremum over ¢ € R" and obtain
1B )l < 1 fllsp - llgllss, - (14)
It is easy to see that (14) implies also the inequality

1Bu(f, )l < £ llsg - 191, @y (15)

Therefore, the following theorem is valid.

Theorem 1. The following equalities are valid:

1flls,, = sup |Bi(f,9)l, (16)
lgllz_, =1

lgll, = sup  |Bi(f,9)l (17)
1flls, =1

Proof. Let us prove (16). If 1 < p < oo, the function f(z) is measurable on R and satisfies
1Bu(f, 9)] < Mllgllr,, @ (18)

for any function g € Loo(R™), where Lo (R") is a set of measurable essentially bounded
and finite functions, then f € 5;; and
(19)

7

M = |flls,,

Following the proof of the similar statement proposed by Nikol’skii [1, p. 19], we assume
that s is the number of infinite components of the vector p, 0 < s < n, while the remaining
components are finite.

Suppose that the statement is false and the inequality [|f]|s ; > M holds for some

function f(z). In this case, there exists to € R™ for which

N

1, > M. (20)
and we can find a positive integer k£ such that the function

|f(z)], if [f(x)]<k and z€K;
o(x) = k, if [f(x)]>k and z€K;
0, if ré¢ K

to,l

0,07

0,07

satisfies the inequality
1ol Ly, ) > M-

Next, we use the Nikol’skii functions [1, p. 20|, which are defined as follows. For p; < oo,
we assume that

-----
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(for ¢ = 1 we suppose that [|¢[|r, = [p]), then ¢; = 0, if [|¢[[z, = 0. For p = oo, we
assume that

XF; (Tiyes%n) if iy .

¢z(ximu 7xn) — m; F; ) 1 m;r; 7é Oa

0, it m;F; =0,
where F; = {(xu?xn) : ||90||(p1,---,pi—1),11><~~~><Iz'—1 > ||90||(p1 ----- pi),11><"'><1i}7 m;F; is the
measure of the one-dimensional section of the set F; over z; for fixed z;.4,...,2,, and

XF, is the characteristic function of the set Fj.
It is easy to see that g € Lo(R"), [|g[|r,, =1 and

[ te@taids = [ lptgtalde > el ) > M

%0,

Hence, we take into account (20) and obtain

|Bi(f, 9)| = sup

teR™

f(@)g(z)dx

Kn

— [ ga)lds =

70,1

> [ le@lg@ide > el > M.
io,i

Therefore, we obtain the estimate

1Bi(f, 9)| > Mgl @),

which contradicts to (18). This completes the proof.

(I
Therefore, on the one hand,
Hf”sﬁj < sup |Bl(fug)| (22)
B
On the other hand,
sup  [Bi(f,9)| < (I flls,;- (23)

1911, gy =1

The proof of equality (16) follows from inequalities (22) and (23). Equality (17) is proved
in the same way.

Theorem 2. The partial differential equation

ou(t, )

p— 1 D
B div(DVu(t, x)),

u(z,0) = p(z)
15 solvable in the spaces S%J(R”), and there exists the estimate
utt, 2)lls, oy < I3,
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AHN3OTPOITHAYA INOPY3NA B AHU3OTPOITHBIX
ITPOCTPAHCTBAX CTEITIAHOBA

B.A. I'opaos, BYHII BBC «BBA nmenn npodeccopa H.E. 2Kykosckoro
u FO.A. Tarapuna>, r. Boponex, Poccuiickas ®@eneparus

B craTbe paccmarpuBaeTcs 3a/a4a, CBsI3aHHAST ¢ 00paOOTKOIN n300parKeHuil 1 KOMITbIO-
TEepHBIM 3peHreM. MHOTrre MeTo bl MOMOTaloT PEIUTh Takoi Tull 3ajad. Hanbosee mostes-
HBIMU U UWHTEPECHBIMU U3 HUX SBJISIOTCS METOJbI YPABHEHUIA ¢ 9aCTHBIMUA MTPOU3BOIHBIMH,
7 0c0D0O€e MECTO B 9TUX WMCCJIEIOBAHUSX 3aHIMAET Heauneinas muddysusa. OyHaamMeHTa b
Hasl TEOPeTUIECKasi OCHOBA B TEKYIEM KOHTEKCTE sIBJISeTCs IEHTPAJIBHON JaCThIO JIAHHOTO
moxojia. Vtak, B craThe BBEJIEH HOBBINA (DYHKIIMOHAJBHBINA KJACC IIPOCTPAHCTB, IOJIyJe-
HA U JIOKA3aHA JIeMMa 00 9KBUBAJEHTHOCTH HOPMUPOBKH B aHH30TPOITHBIX ITPOCTPAHCTBAX
CremaHoBa, MOJydYeHA JIEMMa O TOM, 9TO PACCMATPUBAEMBIE MPOCTPAHCTBA ABJIAIOTCS Oa-
HaxoBbIMU. [loJiydeHa TeopemMa O pa3penMMOCTH yPaBHEHUsI AHU30TPONHON nuddy3un B
aHM30TPOIHBIX IpocTpaHcTBax CrenanoBa. Pe3yabraTbl MOryT OBITH IPUMEHEHBI K 0Opa-
60TKe U300paKeHUil ¥ KOMIIBIOTEPHOMY 3PEHUIO M MOT'YT JIaTh HOBBINA B3TJIs[ Ha pEIleHIe
JIAHHBIX 3aJ1a4.

Karoueswie crosa: duddysus; npocmparcmea Hukorvckozo; anuzompontvie npocmpar-

cmea Cmenanosa; anuzomponnasn ouddysus; duddepenyuarvroie YypasreHus.
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