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The aim of this work is to carry out numerical calculation of electric fields in
axisymmetric systems for cathode protection of underground structures against corrosion.
As is known, cathode protection is a complex multi-parameter system, which has a number
of features depending on the type and form of the protected structure, properties of the
surrounding environment, etc. As a result, the modelling of protection parameters is quite
complex and requires new more advanced computer technologies. In this work, we construct
a mathematical model of the problem on the electric field distribution in an axisymmetric
system for cathode electrochemical protection of underground structures. In addition, we
propose an algorithm to solve the problem. The algorithm is based on the use of integral
Green transformations and, in particular, the second Green integral formula. Also, we
give an example of a computer implementation of the proposed algorithm in the case of a
homogeneous half-space. The Scilab application package is used to implement the example.

Keywords: mathematical modelling; cathodic protection; electric field; Green integral

formula; Scilab.

Introduction

Protection of underground structures against corrosion is one of the most
important measures to preserve the operational characteristics of these objects. Cathodic
electrochemical protection allows to slow down the corrosion processes due to changes
in the electrical potential of the protected structure surface that is carried out using an
external DC source. Among the possible problems we note the risk of partial destruction
of the insulation coatings of protected structures, as well as the impact of the so-called
stray currents on nearby objects. Therefore, the problem on mathematical modelling of
the electrochemical system parameters is relevant [1-3 and others|.

Theoretical and practical issues of modelling electric fields in systems for
electrochemical cathode protection are considered in the fundamental works by
Tossel Yu.A., Glazov N.P., Ivanov V.T., Ostapenko V.N., Cikerman L.Ya., Tkachenko V.N.,
Krasnoyarskii V.V., Lortkipanidze B.G., Pritula V.A., Freyman L.I. and others. These
works propose various mathematical models of the distribution of electric fields in
electrochemical systems, and consider numerical and analytical methods to solve the issues.
However, it cannot be said that this issue is fully resolved. Cathodic protection is a complex
multi-parameter system, which has a number of features depending on the type and form
of the protected structure, properties of the soil that surrounds the structure, etc. As a
result, the modelling of protection parameters is quite complex and requires new more
advanced computer technologies.
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1. Mathematical Model of the Electric Field in the Axisymmetric
System for Cathode Protection of Underground Structures

Consider cathode electrochemical protection of an axisymmetric underground
structure located in a layered half-space. We assume that the half-space consists
of N axisymmetric layers €2; with specific

electrical conductivities o;, where ¢ € 0 LA
{1,...,N}. Let I be the current flowing -

down from the anode ground located : 0,
at the point A of the layer Q;; wu;
be the value of potential in the layer

Q;, and k£ be the number of the layer /A\;f

() in which the protected structure is

located. For calculations, we use cylindrical —_ | T
coordinate system (7, ¢, z) and assume that o

the symmetry axis of the environment z

coincides with the symmetry axis of the Fig. 1. General scheme of the
structure (Fig. 1). electrochemical system

Based on the general theory for
modelling of electric fields of a point source in inhomogeneous environment [4-5|, we
obtain mathematical model (1) — (8) for cathode protection of axisymmetric underground

structures:
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Y =0, Y =0, —o<z<oo, 0<r<oo, i=1,..,N, (7)
a(p Lp:O a(p p=T
u; — 0, T2+Z2—>OO, 1€ Mo,

lu,| < 00, Vr2422—0, (8)

where § is the Dirac delta function, M; is a set of indices of layers that are beside the
earth surface, M, is a set of indices of layers that tend to infinity, f;(r, z) are equations
describing the boundaries between layers that are axially symmetric, i € {1,..., N}; s
the normal to the boundary between the corresponding layers, S is the protected structure
surface, ¢(r,z) is the function of the specific polarizability of the protected structure
surface, v(r, p, z) is the function describing the distribution of the potential of the inner
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coating of the double electric layer at the boundary between the structure and surrounding
environment, 7 g is the external normal to the structure surface.

In this case, equations (1) — (2) characterize the anode grounding field with coordinates
(10,0, 20), equation (3) describes the electric field on the earth surface, (4) — (5) present
conditions of continuity of potential at the boundary between layers, (6) is the boundary
condition on the protected structure surface, (7) is the condition of symmetry of the electric
field relative to the plane (¢ = 0,¢ = 7, z), (8) is both the condition of the potential drop
at the infinite distance from the field source and the condition that the potential is limited

in some layer with the number p.

2. Development of an Algorithm to Solve the Problem

Since the electric field is symmetrical with respect to the variable ¢, then the dimension
of problem statement (1) — (8) can be reduced by applying the Fourier transform

™

7™ (r, z) = /u(r,gp,z) cos(mp)dy, 9)

0

where the functions 7™ (r, z) are coefficients of the expansion of the function u(r, ¢, z) in
the Fourier series

1
u(r, @, z) = (r,z) +— Zu (r, z) cos(my). (10)

Next, we use the second Green integral formula [6], according to which the following
equality holds for the desired formula @™ (r, z) and some Green function G:

o gu oG
Q T

where T is the set of all integration boundaries (i.e., boundaries between layers) v;, where
i € {1,..,N — 1}. We assume that the Green function can be found analytically or
numerically, and the m-th coefficients of the expansion of the Green function in a Fourier
series satisfy the equations

™ 1aG™m PG m? 1
52 o 92 FGi = —T—qé(r —14)0(2 — 24), (12)
(m)
G( ™ 4+ e(r, z)akﬁ— =0. (13)
on S |g

Here the boundary conditions similar to conditions (3) — (5), (8) are satisfied.

Use Green formula (11) for each integration domain and summarize the obtained
results. For each fixed value m = 0,1,2,..., we obtain that the initial boundary value
problem is reduced to the Fredholm integral equation of the second kind relative to the
corresponding m-th coefficient of the expansion of the current density j'™(r,z) in the
Fourier series

«(P)m(P) = -2 [

~

0G™ (P, Q)

(m)
qu (G"(P,Q) + C(Q)Ukﬁ—ﬂ% +

Ok
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where () is the integration variable, P is the projection of the calculation point onto the
plane (1,0,z); A is the projection of the point containing the anode ground; W)q is the
external normal to the structure surface at the point (); v is the generator of the protected
structure surface; the function 5™ (r, z) is defined as follows:

gu™ (r, z)

(r,z) = | - (15)

j(m)

Further, from (6), (14) and (15), we find that the value of the function @™ can be
calculated by the formulas

j(m) (m)
wp) = [, 0(,0) + @i P D -
oG™ (P I
—/Tﬁ(m)(@ﬁaiq’—@mﬁ EG(’”)(P, A), Pé¢n, (16)
v
T (P) =B (P) — e P)(P), P e (17

The coefficients @™ of the expansion of the function w in a Fourier series allow to
determine the original form of the function u by formula (10). In such a way we obtain
the desired solution to the problem.

Therefore, we can formulate the final algorithm to solve problem (1) — (8) for each
point of the computational domain.

1. Set the initial value of the iteration to be m=0.

2. Numerically solve Fredholm integral equation (14) with respect to the unknown
current density ™ (r, z) for the given fixed m.

3. Use formulas (16) — (17) in order to calculate the value of the m-th coefficient
u™(r, z) of the expansion of the potential function wu(r, ¢, z) in a Fourier series.

4. Calculate the potential function u(r, ¢, z) according to formula (10) by adding the
next term of the form @™ (r, z). Verify the condition of termination of iterations (the
achievement of a given calculating accuracy ¢). If the specified accuracy is achieved, then
stop the calculation. Otherwise, go to the next iteration with m = m + 1 and repeat
Steps 2 — 4.

The general scheme to solve problem (1) — (8) is shown in Fig. 2.

Remark 1. An individual issue of this algorithm is the question on constructing the
Green function for a layered half-space. The Green function G is constructed in a certain
analytical or numerically analytical way for each type of a specific computational domain.

As is known [7], the m-th term of the expansion of the Green function in a Fourier
series for a homogeneous half-space is described as follows:

o0

1
G"™(r, 2,10, 20) = 3 /eazzoJm(ar)Jm(aro)da, (18)
0

where .J,,, is the Bessel function of the first kind of the m-th order, m =0,1,2, ....
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Fig. 2. Block diagram of the algorithm to solve the problem

yes

An example of constructing the Green function for horizontally layered computational
areas is given, for example, in [4]; examples for cylindrically layered and spherically layered
areas are presented in [8, 9.

Remark 2. Another important issue is the problem on numerical solution to Fredholm
integral equation of the second kind (14) with respect to the unknown value of the
current density j™ (r, z). In particular, one of the possible methods to solve this problem
is the Krylov—Bogolyubov quadrature method [10]|, which allows to reduce the integral
equation to a system of linear algebraic equations. In this case, the transformation of the
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integral equation is carried out by replacing the integral included in the equation with
its approximate value of the integral sum. Derivatives along the normal to the structure
surface can be found numerically by various numerical differentiation formulas.

3. An Example of a Computer Implementation of the Algorithm
in the Scilab Package in the Case of a Homogeneous Half-Space

Numerical and software implementation of the algorithm given by formulas (10), (14)
— (17) is a rather complicated problem and is possible only in a number of special cases,
since, for arbitrary layers, the Green function is given in an implicit form.

In particular, as an example, consider the case of a homogeneous half-space under the
following three assumptions. First, the considered half-space is homogeneous. Second, the
condition v(r, p, z) = 0 is fulfilled. Third, the specific polarizability function ¢(r,z) of the
protected structure is such that the first term on the right-hand side of equation (16) is 0.
In this particular case, equations (16), (17) take the following form:

T (r,2) = G (P, A), P ¢, (19)
2(71

@ (r,2) = ZGOI(P,A), Pen. (20)
01

As noted above, in the case of a homogeneous half-space, the Green function takes
well-known form (18).

In order to obtain a numerical solution to system of equations (10), (18) — (20), we
use the Scilab application package, which allows to integrate functions numerically and
to calculate complex composite mathematical expressions, including those that require to
use built-in Bessel functions.

We use the tools of the Scilab package in order to develop a program for calculating and
graphing data visualization for the electric field of a point source in the case of cathodic
electrochemical protection of an underground spherical reservoir having the radius rg and
the center located at the depth zg m. The results of calculation of the electric field are
presented in Fig. 3. In the calculations, we use the following numerical parameters: I = 2
A, 01 = 0,1 Siemens/m, v = 0 B, ro = 4,5m, zp = 4,5m, rs = 2,5 m, zg = 4,5 m,
¢ = 0; calculated area is r € [0;7] m, z € [1;7] m.

(=
N
~NImbosNm AR

Fig. 3. Results of calculation of the distribution of the electric field
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Conclusion

In this work, we develop a mathematical model of problem on the distribution of

an electric field in an axisymmetric system of cathode electrochemical protection of
underground structures. In addition, we propose an algorithm to solve this problem. The
algorithm is based on the use of integral Green transformations and, in particular, the
second Green integral formula. Also, we give an example of a software implementation of
this algorithm in the case of a homogeneous half-space. The Scilab application package
was used to implement the example.
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MOJEJIMPOBAHUE SJIEKTPUYECKUX ITOJIEN
B OCECUMMETPNYHBIX CUCTEMAX KATOJHOU 3AIIINTBHI
ITIOA3EMHBIX COOPY2KEHUNN

T.M. IlTamcymourosa, Bamkupckuii rocyrapcTBeHHBIN arpapHblii YHUBEPCHUTET,
r. Yda, Poccuiickas Peneparnius

ess paboThl — MpPOBEJEHNE YHCJIEHHBIX DPACIETOB JIEKTPUIECKUX IOJIEH B OCECUM-
METPHYHBIX CHCTEMAaX KATOJIHOM 3alUThI [IOJ3€MHBIX COOPY2KeHni oT Kopposun. Kak u3-
BECTHO, KaTOJHAH 3aIUTa ABJIAETCH CJIOKHOI MHOT'OIIapaMeTPUIECKO CUCTEMO, MMEIoIIeil
Psifi OCOOEHHOCTEl B 3aBUCUMOCTH OT BHUIA U (POPMBI 3aIUIIAEMOTO COOPY2KEHUsI, CBOUCTB
OKPY2KaloIleil coopy2KeHre cpeisl U T.J1. Bee 3To jmesraeT mporecc MOIeIMpOBaHUS TapaMeT-
POB 3AIUTHI JJOCTATOYHO CJIOYKHBIM, TPEOYIOIINM BCe HOBBIX KOMIIBIOTEPHBIX TeXHOJoruil. B
X0/1e PaboThI OBLIA TOCTPOEHA MATEMATAIECKAS MOJIEDb 33/Ia9H PACIPEIEICHNS YIEKTPUIe-
CKOI'O II0JI B OCECUMMETPHUYHOI cUCTeMe KaTOHOHN 3JIEKTPOXUMUYECKON 3alllUThl I1013€M-
HBIX cOoOopyzKeHnit. /lajiee pejioyKeH aJirOPUTM PEIeHus JaHHOHM 3a/1a9, OCHOBAHHBIN Ha,
[IPUMEHEHUU WHTErpPaJIbHbIX IIpeobpazoBanuii ['puHa M, B 9aCTHOCTHU, BTOPOIl MHTEIDAJIb-
Ho#t popmynel ['puna. Takzke TpUBOAUTCS NMPUMEDP KOMIIBIOTEPHON peasin3aliii JTaHHOTO
aJITOPUTMA B CJIyYae OJHOPOIHOIO HOJIyIpOCTpancTBa. Jis peanu3anun npumMepa ObLT UC-
[IOJIB30BAH TAKeT MPUKJIAJHBIX IporpamMm Scilab.

Karouesvie cro8a: mamemamuieckoe Mo0eauposanue; Kamoonas 36uuma; sAeKmpu-

yeckoe noae; unmezpasvran popmyasa I'puna; Scilab.
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