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Based on a fundamentally new approach, we present a complete mathematical model
for estimating the mass of water in the flooded coastal relief, taking into account the water
in the basin of the reservoir in a given region. Taking into account stochastic studies, we
construct an approximate model of the relief of the reservoir basin bottom, as well as the
relief of a possible section of the flooding of this basin coastline. The modelling is based
on the empirical data of measurements of the reservoir depths, as well as on the study on
the architecture of the lines of the coastal maps of the possible flooding zone. Based on the
measurements of the depths and bumps of the bottom surface, we verify the hypothesis that
the use of the two-dimensional Gauss distribution is adequate. Numerous confirmation of
this hypothesis on the basis of empirical measurements allows to use localized elliptic Gauss
surfaces as a model function in order to construct an approximate model of hillocks and
valleys. At the same time, the coordinates of local extremes of the depths, as well as the
values of these extremes are constant. In order to simulate the surfaces of the underwater
slopes, we construct planes according to depth measurements. This simulation is not a real
copy, but is stochastic in nature and allows to take into account the main goal of the model,
i.e. a full adequate estimation of the water mass of the flooded coastal relief included the
water in the basin of the reservoir in the region. The equation of the model of the entire
flooded region includes all local functions constructed for the mounds and troughs of the
reservoir, as well as the functions of the planes of the slope models. For an approximate
construction of the surface equations of the coastal zone, we use maps with detailed level
lines as empirical data.

Keywords: mathematical terrain modelling; numerical methods; computer modelling;

statistical hypothesis verification.

Introduction

The need to ensure the effective operation of all divisions of the Ministry of Emergency
Situations (Russia) makes it expedient to develop adequate mathematical models related to
possible catastrophes. Large flood is one of the main natural phenomena causing significant
losses to the country’s inhabitants [1,2]. Large floods can be caused both by meteorological
conditions and by the destruction of technical facilities in the inland water bodies. The
prognostic modelling of the relief of reservoir basin bottom is actual. The considered
problem is the predictive modelling of the water basins bottom topography, along with
the modelling of flooded coastline relief to determine the water mass and estimate the
possible flood consequences.

The use of Gaussian functions for the modelling of various surfaces is well presented
in the modern literature [3-9]. In order to determine the numerous parameters of the
flooded surface model, computer algorithms are usually used [4-7]. The target function
is considered to be the root-mean square diversion from the empirical data of the depth
measurement of the simulated basin terrain |7].
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In this paper, we construct a model of two terrain sections: 1) a terrain model of the
abovewater (coastal) section and 2) a terrain model of the underwater section. In order
to construct the terrain models, we implement the following scheme. First, based on the
normal distribution, we construct the localized Gaussian surfaces. Second, based on the
empirical data of the pool depth measurement, we calculate the parameters of the localized
surface section. Finally, taking into account the geographic and landscape features of the
region, we construct a complete model on the basis of the localized Gaussian surfaces. We
give the mathematical validation of the model equation choice as follows. First, we verify
the statistical hypothesis about the possibility to apply the modified Gaussian functions
in order to simulate both the abovewater and underwater sections. Then, using computer
simulation, we improve the parameters of the model, which is the sum of modified Gaussian
curves with the expected level of flooding. In fact, in order to simulate the convex and
concave sections of the bottom surface, we use the stochastic modelling method.

In this work, we approach the terrain modelling in different ways. Namely, the mounds
and cavities of the bottom relief are replaced by localized Gaussian surfaces closest to
the real surface in the stochastic sense. Therefore, the locality of the extrema remains.
Slopes surfaces are simulated by the equations of planes, the construction of which
uses coordinates of the depth measurement points. This fundamentally new approach
significantly reduces the number of model parameters. In addition, the model, as a
functional form, can be used for various purposes of the Ministry of Emergency Situations
(Russia).

In order to construct the model of the abovewater section of relief, we use horizontals
of the topographic map.

1. Statistical Hypothesis Verification

Note that the linear operations of ellipse reduction to the canonical form transform
the two-dimensional distribution density to the following form:

1 1 [X? n Y?2 1 X2 1 Y?2 (1)
exp|—=|—+—=| | =——exp| — . exp | ——— ).
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The right side of (1) shows that we have a product of two one-dimensional Gaussian
curves. Therefore, in order to verify the statistical hypothesis of the type of distribution,
we can use sections.

The results of the measurements were processed by the standard program shell
Mathcad for the Pearson’s agreement criterion. For completeness of the presentation, we
give the obtained computations below.

Based on the first section, we obtain that the number of depth measurements is n =
100, the number of intervals determined by the Sturges’ formula is 7, the minimum and
the maximum depth measurements are 130 and 167, respectively, the average value is
Z = 150, and the depth measurement procedures were carried out along the interval
4.0, =4-6,2 = 25m with the use of the analogue of the Two Sigma rule. Based on the
second section, we obtain that the number of depth measurements is n = 50, the number
of intervals is 6, the minimum and the maximum depth measurements are 142 and 167,
respectively, the average value is § = 150, and the depth measurement procedures were
carried out along the interval 4 - o, = 4 - 4,9 =~ 20 m with the use of the analogue of the
Two Sigma rule.
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The measurements were carried out using rectangular carrier with the size 25 x 20 =
500 m?2. Along the first section, the critical point is x2. = 12,28. The observed value of the
criterion is x2,;; = 2,07. For the second section, we have that xi, = 11,37 and x2,,,, = 5,01.
In the both cases, the inequality x2,.,; < xi, holds. Therefore, there is no reason to reject
the hypothesis of normal distribution.

2. Localization of Gaussian Surface

Consider a two-dimensional Gaussian surface. Let z., y. be the coordinates of the
center of the surface, 0,, o, be the root-mean-square deviations, and p be the correlation
coefficient. Then the two-dimensional distribution density of the normal distribution has

the form
1 1 .T—JZ'C2 2x_-73'c2y_yc2 y_yc2
flz,y) = = exp (— {( 5 ) —p ( ] ) +( 5 ) D (2)
210,04/ 1 —p 2 o 040y ol

Let us cross surface (2) by the plane z = 2, which is parallel to the plane OXY. We
obtain an ellipse in the section (Fig. 1). The equation of the projection onto the plane
OXY has the form

(ZL‘ - xc)Q 2(1‘ - xc)Q(y - yc)2 (y - y0)2 I )
2 - p + 2 - d 9
lop 00y o,

where d* = —2(1—p?)In [272’0%%\/ 1-— pQ} . In order to draw a section through the point

M (z.+ 20,,y.), we apply the Two Sigma rule. At the point M(z. + 204, y.), the height
of surface (2) is exp(—2)

= M(2).
2no,00\/1 — p? @)
Definition 1. The part of surface (2) located above the ellipse is called the localization
of the Gaussian surface

(ZL‘ B xc)Q 2(1‘ B xc)Q(y B yc)2 (y B yc)2
e 0.0, + o —2(1—p*)1In [2#2005,;02! 1-— p2] . (3)
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Besides neglecting 5 — 7% of accuracy, % &

we localize the significant part of the
surface by replacement of the elliptical
carrier with a rectangular one.

The rectangle Dy is constructed such
that ellipse (3) is inscribed in Dg (Fig. 1).
The practical application of the Gaussian
surface is justified by the fact that the
Gaussian surface is completely determined
by the parameters. Namely, the parameters
0z, 0, determine the semi-axes of ellipse
(3), and the parameter p determines the
angle of inclination « of the axes of the
ellipse symmetry (Fig. 1) by the equation ~ Fig. 1. Replacement of the elliptical carrier

¥

0

9 9 with the rectangular one
Oxgy
p=—=tg2a. (4)
20,0y
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Denote the coordinates of the center of the rectangle Dg by z. and y.. The center is the
surface top. Since we chose the carrier according to the Two Sigma rule, the dimension of
the rectangle is 40, x 40,. According to formula (4), the inclination angle of the new axes
allows to determine the parameter p. This rectangle is the carrier of the model component.
In addition, the surface height is inversely proportional to the region of the carrier

8 1
E_m/l—pZ'SDE'

The indicator function of the rectangle D is
Oa if (I,y) GDEu

XDE(xay) = {1’ if (@y) §é Dyg.

The equation for the localized surface is

Hp

Fpy(7,y) = pf(x,y)xp, (7,9).

The part of the general simulated convex upward surface deviate from the normal
distribution by the factor ¢ > 0 (Fig. 2), and the equation for the part of a convex
downward surface deviates from the normal distribution by the factor 4 < 0 (Fig. 3).
The constants p are determined from the empirical sample at the point with coordinates
(2, y.) and characterize both the height of the underwater relief cap above a certain depth
level and the depth of the underwater relief cap below a certain depth level. Similarly, we
construct a model of the abovewater (coastal) section of the relief.

0.2

0.15- -0.05

0.1

0.1~

005 -0.15 =

Fig. 2. Localized section of the surface (1> 0) Fig. 3. Localized section of the surface (u <0)

3. Determination of Parameters by Empirical Data

In [7], the empirical level lines are obtained with the help of empirical data on the
depths of the investigated reservoir (Fig. 4 on the left).

In Fig. 4 on the left, solid lines indicate the average empirical level lines defining the
convex sections of the bottom relief, and dotted lines indicate the boundaries (i.e. the
cavities between them). It follows from the property of the normal distribution that the
region of a rectangular carrier automatically determines the height of the bottom relief
mounds or the depth of the cavities.
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N =38

Fig. 4. Elevations (mounds) of the bottom relief are indicated by white color, and black
dots indicate the cavities

The following statement gives the principal (stable) solution to the rectangle
decomposition problem of the investigated region.

Theorem 1. [7| Every open non-empty bounded set on the plane is the union in pairs of
at most a countable family of the closed rectangles without common interior points.

Taking into account the hydrological features of the edge of the water body under
study, we obtain that the fine partition by rectangular carriers is impractical. If the depth
line map of the reservoir is absent, then depth measurements are conducted, based on which
the empirical level lines are constructed, the transitions between mounds and cavities are
determined, and the size of the rectangles with provision for the depth difference are
taken into account. In this case, we have a purely computer problem on determining the
coordinates of the vertices of the rectangle associated with the empirical line of the depth
transition level (Fig. 5).

4. Statement of Computer Problem

Fig. 5 shows a scheme of the arrangement of depth measuring points on the empirical
level line. The coordinates of the depth measurement on the line are given. It is necessary
to determine the shape and position of the rectangle bounded by the given level line. More
precisely, we need to determine (based on the given points) the coordinates of the vertices
of the rectangle using a computer method.

We allow some certain simplifications in the model construction. In fact, these
simplifications have little effect on the accuracy and reliability of the model, since we
can change the number of carriers and replace a region with two adjacent ones.

Suppose the following.

1. For the given carrier, the surface formula is unimodal.

2. The region bounded by the horizontal is assumed to be convex. In other words, this
region entirely contains any straight line passing through two points that belong to the
region.

3. The depth measurements were taken with a certain constant step. Therefore, the
horizontal line can be replaced with the inscribed polygon.
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(xi(up), y;(up))

(x/(max), y;(max)

__— (x;(down), y;(down))

(x; (min), y;(min))

Fig. 5. Construction of a rectangular carrier

Algorithm to determine the coordinates of the vertices of a rectangle.

1. Replace the convex region with a polygon having vertices at the depth sounding
points (z;,y;) i =1,2,--+ ,m.

2. Compare distance between all points and find two points located at the
greatest distance from each other. Suppose that these two points have the coordinates
(x;(max), y;(max)) and (x;(min), y;(min)). Find the equation of the straight line passing
through these two points. Find the equations of two straight lines that are perpendicular
to this line and such that the first line passes through the point (z;(max), y;(max)), while
the second line passes through the point (z;(min), y;(min)).

3. Compare the positive deviation of all points from the straight line passing through
the points (z;(max), y;(max)) and (x;(min), y;(min)). Define the point with the greatest
positive deviation (z;(up),y;(up)) and the point with the greatest negative deviation
(xi(down), y;(down)) (Fig. 5).

4. Draw two lines such that each line passes through either the point (x;(up), y;(up))
or the point (z;(down), y;(down)) and is parallel to the straight line passing through the
points (z;(max), y;(max)), (z;(min), y;(min)).

5. The pairwise intersections of the four lines described above define the coordinates of
the rectangle vertices. Denote these points by (z1(p),y1(p)), (x2(p), y2(p)), (z3(p),ys(p)),
(24(p), ya(p)) in the counter clockwise order.

Based on the vertices of the rectangular carrier, we can determine all parameters of
the Gaussian surface for which this rectangle is the carrier as follows.

1. Coordinates of vertex are

z;(max) + x;(min) y;(max) + y;(min)
- 2 = 2
2. Parameters of the semi-axes of the ellipse are

Oy = i\/[xl(p) —a3(0)] + 1) — )], oy = i\/[xz(p) — 24(p))” + [12(p) — va(p)]”.

3. The parameter p is known from formula (4), and the angle is found from the following
equation:

Te

yi(max) — y;(min) }

= t
o= e {xi(max) — z;(min)
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5. Modelling of Relief Slopes of Water Basin Bottom That
Do Not Belong to Mounds or Cavities

Such slopes include the coastal zone, as well as the section of the intermediate zone
between the cavities and the mounds (Fig. 4, 7). The land relief zones include the following:
a lowland, a sole, a mud hole, a cliff, a section of a valley, etc. These sections are simulated
by the definition of the plane equation. Let us consider the region bounded by the points
of depth measurements (Fig. 6).

Let M(z,y, z) be a variable point on the plane (abkm) (Fig. 7), where the coordinates
of the points are as follows: a(z1,y1,0), b(z2,y2,0), c(xs,ys,0), d(xy4,ys,0), m(xs, ys, —h),

k(l’4, Ya, _h)

Fig. 6. An example of the region bounded Fig. 7. Construction of the plane
by the depth measurement points

The equation of this plane is obtained from the vector coplanarity condition. The
mixed product is <CTW, W/[, W) =0.
Calculate the determinant
r—1 Y—W% Z
r—x2 Yy—y2 2z | =0,
r—2x3 y—ys z+h

and obtain the equation of the plane

h — h — h —
(de yl)+y (Jfld 952) + ($1y2d 3111’2)' (5>

z=p(r,y) ==z

The region of the relief with a carrier in the form of a quadrangle P = (abcd) is
simulated by equation (5) acting limited on the carrier:

p(@,y) X Xp, (2,9). (6)

Here x,_ (x,y) is the indicator function of the rectangle:
07 if (x,y) € pE;

Xrg (T:9) = {1, it (z,y) ¢ Pe.
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Summarize all such sections and obtain the functional description of the relief zone
considered in this paragraph:

ij(l', y) X XPE], (l‘, y)
J
Such a modelling can be used in the cases with a flat bottom or a plateau (Fig. 8).

Fig. 8. Relief with a flat bottom or a plateau

6. Complete Mathematical Terrain Model

The main problem of the flooded surface modelling is to predict the excess volume
of water caused by natural or climatic weather conditions. For that kind of prediction, it
is desirable to have a model with a certain small set of parameters that characterize the
volume of water. Let hp, be the depth on the level line corresponding to the rectangle D;
(at the point (z;(up),y;(up))), f;(z,y) be the function defined by formula (2) for a given
medium, (x;,y;) be the center of the carrier, and h(z;,y;) be the depth of measurement
at the point (x;,y;). Then the equation of the mathematical model concentrated on the
rectangle for the underwater mound is as follows:

Fp (,y) = v} x [u < fi(, y)Xo, (w,y)] : (7)

where = —1, v = [hp, — h(z;,y;)].
The equation of the mathematical model concentrated on the rectangle for an
underwater cavity is the following:

Fp,(z,y) =vj X [u < (2, y)Xo, (w,y)] : (8)

where = +1, v; = [h(xj,yj) — hDj].

The complete equation of the section of the flooded relief is composed of all local
functions calculated for the cavities and mounds (7) — (8), and the volume concentrated
on the sections of the bottom relief simulated with the help of planes (6):

Fwater section — ZFB_J + ZFD_] + ij(x,y) X ij (Ivy) (9>
J J J

A similar approach is used to construct a land-based relief model for the coastal zone.
A map of the level lines is used to determine the size and location of the rectangular
carriers of the model of the abovewater coastal section of the landscape.

Conclusion

In this work, based on a fundamentally new approach, we obtain a complete
mathematical model of the flooded terrain. Nevertheless, over time, especially the water
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Flooding level
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Fig. 9. Flooding level line

section of the model can change. In this case, a new model can be constructed by the
proposed technique. Note that the current technical level of echosounders allows to use
the echosounders in order to determine the level and shape lines of the water carriers.
In order to construct a surface model, other approaches are possible, for example, digital
modelling and mathematical simulation with the help of a high-order polynomial [10,11].
In this case, there exist both the difficult problem on determining a large number of
coefficients of a polynomial surface and the need to calculate a large inverse matrix. It is
known that this problem is laborious and has relatively wide margin of error.
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MATEMATNYECKOE MOJAEJINMPOBAHUE PEJIBE®OB
C IIOMOIIIBIO MOAUPUITNMPOBAHHBIX ®YVHKIIUN T'AYCCA

B.A. Pooun!', C.B. Cuneaybos'
'Boponexkckuit uncruryr MB/I, Poccun, r. Boponesx, Pocceniickas @eeparus

B pabore Ha NpUHIUNAAIHLHO HOBOH OCHOBE IMOCTPOEHA TOJHAST MATEMATUICCKAS MO-
JIeJTb LTl OIEHKHM MACChl BOJBbI 3ATOILISIEMOTO GEeperoBoro pesbeda ¢ yIeToM BOJbI B Oac-
ceiiHe BosoeMa Ha JgaHHOW Teppuropuu. [lpubimkennast Mojeb pejibeda jiHa OacceiiHa
BOJIOXPAHMJIUINA U pesibeda BOZMOXKHOI YacTh 3aTOIIeHNs O€PEroBoil JINHUU JJAHHOTO Oac-
celfHa MOCTPOEHA C yIeTOM CTOXACTHYECKHUX MccJieoBanuii. MojennpoBanue IpoBeJeHO Ha
6a3e SMIUPUIECKUX JIAHHBIX TPOMEPOB IIYOUH BOJIOEMA M MCCJICIOBAHNS APXUTEKTYPHI JIU-
HUM YPOBHS KapT MPUOPEKHOIT BO3MOXKHON K 3aTOIJICHUIO 30HLI. Ha OCHOBE JAHHBIX ITPO-
MepOB TUIyOMH U OyIpOB IMOBEPXHOCTH JHA IIPOBEPEHa TMIIOTe3a aJIEKBATHOCTH HCIIOJIb30-
BaHUsI JIBYMEPHOro pacipejesienns: ['aycca. MHOrounc/ieHHOE MOATBEPXKIEHNE ITON TUIIO-
Te3bl Ha 0a3e IMIMPUIECKUX IIPOMEPOB MMO3BOJIMJIO B KAYeCTBE MOJIEJIbHOU (DyHKIUU Ipu
[MOCTPOEHUN TPUOIMKEHHON MO/Ie/ OYyTPOB U BIAINH TPUMEHUTH JIOKAJN30BAHHbBIE SJIJIUI-
Tudeckue nosepxuoctu laycca. IIpn 310M KOOPAMHATEI JIOKAIBHBIX IKCTPEMYMOB TVIyOHH
U 3HAYEHUs] IKCTPEMYMOB COXPAHSJINCH. [[OBEpXHOCTH ITOJBOJHBIX CKJIOHOB MOJEINPOBa-
JINCh TIOCTPOEHUEM ILIOCKOCTEl 10 JIaHHBIM IIPOMepOoB IiryouH. JlaHHoe MojempoBaHmue He
SIBJISIETCSL PEAJIbHBIM KOIIMPOBAHUEM, 8 HOCUT CTOXACTHUYECKUIl XapaKTep U IMO3BOJISIeT YUu-
THIBATDH TJVIABHYIO II€JIb MOJIEJI — TIOJTHYIO aJeKBATHYIO OIEHKY MACCHI BOJIbI 3ATOIISIEMOTO
OeperoBoro penbeda ¢ ydeToM BOABI B OacceiiHe BofoeMa Ha JAHHON TeppuTOopum. Y paB-
HEHME MOJEJIM BCEro 3aTOIUISEMOT0 PailoHa CKJIAJIBIBACTCS U3 BCEX JIOKAJIHHBIX (OYHKIHIA,
[TIOCTPOEHHBIX I OyT'POB U BIIAJUH BOJAOEMa U YPABHEHUI IIJIOCKOCTel MOjeJiell CKJIOHOB.
JlJ1st IpubJIMXKEHHOTO TIOCTPOEHUsI YPABHEHUI TOBEPXHOCTU pejibeda IPUOpPeKHOM 30HbBI B
Ka4vecTBe IMIMPUIECKUX JAHHBIX HCIIOJIb30BAJIMCH KAPTHI C MOAPOOHBIMU JIMHUSMY yPOBHSI.

Karouesvie ca06a: mMamemamuseckoe MoO0eAUPOSaAHUE PENbePa; YUCAEHHBLE MEMOObL;

KomMnvromepHoe MO@&/LUPOSCLHU(?,’ nposepra cmamucCmu4ecKur 2unomes.
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