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The detailed adaptive unscented Kalman filter algorithm is provided. Step-by-step

schemes of filtering algorithms used for the software development are given. Nonlinear

filtering algorithm efficiency is investigated with considering an example of a nonlinear

continuous-discrete model. The statistic estimator based on the continuous-discrete adaptive

unscented Kalman filter with noise is proposed for the nonlinear system parameters

estimation. The solution to the problem of solar radiation parameters estimation based on

the maximum likelihood method and the adaptive unscented Kalman filter is shown. The

obtained results lead to significant improvement of satellite trajectory prediction quality.
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Introduction

In practice, it is often necessary to work with different classes of nonlinear dynamical
systems. The description of such system in terms of nonlinear mathematical models
provides researchers with additional opportunities in qualitative analysis of objects and
allows taking into account the accompanying factors caused by the nonlinear essence of
the nature laws.

Consider the following model of a stochastic nonlinear continuous-discrete system in
a state space:

d

dt
x(t) = f(x(t), u(t), θ) +G(t)w(t), t ∈ [t0, tN ], (1)

y(tk+1) = h(x(tk+1), θ) + ν(tk+1), k = 0, 1, . . . , N − 1, (2)

where x(t) ∈ Rn is the state process; Rn is the n-dimensional Euclidean space; u(t) ∈ Rr

is deterministic control (input) vector; w(t) ∈ Rp is the process noise vector; y(tk+1) ∈ Rm

is the measurement (output) vector; ν(tk+1) ∈ Rm is the measurement error vector; f(·),
h(·) are nonlinear functions.

Suppose that
• the random vectors w(t) and ν(tk+1) form white Gaussian noises with unknown
covariance matrices of system and measurements noises

E[w(t)] = 0, E[w(t)wT (τ)] = Q(t)δ(t− τ),

E[ν(tk+1)] = 0, E[ν(tk+1)ν
T (ti+1)] = R(tk+1)δki,

E[ν(tk+1)w
T (τ)] = 0, k, i = 0, 1, . . . , N − 1, τ ∈ [t0, tN ];

• the initial state x(t0) is normally distributed with parameters

E[x(t0)] = x(t0), E{[x(t0)− x(t0)][x(t0)− x(t0)]
T} = P (t0)

and has no correlation with w(t), ν(tk+1) for all values of k;
• Θ = (θ1, θ2, ..., θs) ∈ ΩΘ is the vector of unknown parameters.
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In our work we consider the problem of parametric identification of model (1), (2)
taking into account the a priori assumptions.

The same problem for the case when the functions f(·) and h(·) are linear, was solved
by R. Mehra, N. Gupta [1] and K. Astrom [2].

Despite that a lot of solutions to this problem are provided in different books and
papers, the problem of nonlinear models identification is much more complicated and
important in a practical way. One class of the methods to solve the mentioned problem is
basically the continuous-discrete extended Kalman filter (CD-EKF) applied to a linearized
system [3]. Although the CD-EKF is widely used, this filter has some drawbacks. The filter
applies the standard linear Kalman filter technique to linearize a nonlinear model. Hence,
it requires the sufficient differentiability of the dynamic state and the susceptibility to
biasing and to divergence of the state estimates. This approach is sub-optimal and can
easily lead to the divergence. The CD-EKF achieves only the first-order accuracy and
produces a good result only if the initial estimation error and disturbing noises are small.

These difficulties can be successfully overcome with such nonlinear filters as the
continuous-discrete cubature Kalman filter [4, 5] and the continuous-discrete unscented
Kalman filter (CD-UKF) that is used in this research.

S.J. Julier et al. [6] proposed the unscented Kalman filter (UKF) as a derivative-
free alternative to the extended Kalman filter in the framework of state estimation. The
UKF has been developed for the case of highly nonlinear state estimation problems. The
UKF performs a Gaussian approximation with a limited number of points (sigma points),
using the unscented transform. This technique is used to linearize a nonlinear function
of a random variable via the linear regression based on the points drawn from the prior
distribution of the random variable. The UKF has the same computational complexity as
the EKF has. The UKF does not require the Jacobians computing and can achieve the
second-order accuracy of the Taylor expansion. Modification of the UKF for continuous-
discrete models is given in [7].

When solving practical problems, statistical parameters of noise are set inaccurately
or they are completely unknown. The presence of outliers in the measurement data makes
the further determination of such characteristics complicated. When using the incorrect a
priori information about the noise properties of the system and/or the measurements, the
obtained estimates may be biased. Usually the covariance matrices of the system and the
measurements noises are selected accordingly to the results of some empirical data analysis
or the various situations modeling. Often the correct specification of the statistical noise
parameters determines the accuracy of the state vector estimation.

One of the possible solutions to this problem is using adaptive methods for the
measurement data processing, which, along with the state vector estimation, can restore
the statistical characteristics of noises. In this research, the sub-optimal Sage-Husa
estimator [8] is combined with the CD-UKF algorithm in order to estimate and improve
the statistical properties of the process noise. Such improvement reduces the model error,
suppresses the filtering divergence and improves the filtering accuracy.

This paper is organized as follows. In Section 2 the statistic estimator based on the
continuous-discrete adaptive unscented Kalman filter (CD-AUKF) with noise is proposed
for the nonlinear systems parameters estimation. The application of the solar-radiation
model parametric identification algorithm is presented in Section 3. The conclusion is
provided in Section 4.
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1. Parameter Identification

In this work we investigate the problem of estimating unknown parameters of the
model structure that has been obtained from the physical modeling of the process. To
obtain a model with good predictive properties we need informative measurement data
and a suitable model structure able to describe the dynamics of the process.

Estimation of unknown parameters of mathematical model is carried out according to
observation data Ξ and identification criterion χ. The a priori assumptions allow using the
maximum likelihood (ML) method for the parameters estimation. Under mild conditions,
ML estimates have such practically important properties, as asymptotic unbiasedness,
consistency, asymptotic efficiency and asymptotic normality.

Let Y T =
[

yT (t1), y
T (t2), . . . , y

T (tN)
]

be the output signal corresponding to the input

signal U =
[

u(t), t ∈ [t0, tN ]
]

. As the result of an identification experiment a set Ξ =

{U, Y } is generated. According to ML method it is necessary to find such values of Θ̂
parameters, for which

Θ̂ = arg min
Θ∈ΩΘ

[χ(Θ; Ξ)] = arg min
Θ∈ΩΘ

[− lnL(Θ; Ξ)], (3)

where

χ(Θ; Ξ) =
Nm

2
ln 2π +

1

2

N−1∑

k=0

εT (tk+1)P
−1
Y (tk+1)ε(tk+1) +

1

2

N−1∑

k=0

ln detPY (tk+1), (4)

ε(tk+1) and PY (tk+1) are defined based on the corresponding equations of the CD-AUKF.
Incorrect mathematical models and inaccurate noise statistic properties often lead

to the filter divergence. In order to solve this problem, the adaptive filtering technology
has been studied extensively [9–12]. The estimation and correction of the unknown time-
varying noise statistics are carried out with using the noise statistics estimator. Such
estimator can cover the drawbacks of the traditional UKF for the noise statistics of
unknown time-varying filter. The Sage–Husa algorithm is a noise estimator, which is easy
to understand and simple in terms of computing. This algorithm can estimate the first
and the second moments of noise at the same time. Following [10, 11], we combine the
CD-UKF with the Sage–Husa noise statistics estimator.

Algorithm CD-AUKF

Initialization:

• Set the values [13]
ξ = 0, 001, η = 2, ϕ = κ = 0, b = 0, 998.

• Define the initial values

x̂(t0 | t0) = x(t0), P (t0 | t0) = P (t0), Q̂(t0), R̂(t1).

• Calculate

l = ξ2(n+ ϕ)− n, α0 =
l

l + n
,
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β0 =
l

(n+ l) + (1− ξ2 + η)
, αi =

1

2(n+ l)
= βi, i = 1, . . . , 2n,

a = [α0, α1, . . . , α2n]
T ,

A =
(

I − [a | . . . | a
︸ ︷︷ ︸

2n+1

]
)

· diag(β0, β1, . . . , β2n) ·
(

I − [a | . . . | a
︸ ︷︷ ︸

2n+1

]
)T

.

For k = 0, N − 1

Prediction:

• Define x̂(tk+1 | tk) and P (tk+1 | tk) as the result of differential equations (5),(6)
integration

d

dt
x̂(t | tk) = Xf(t | tk)a, tk ≤ t ≤ tk+1, (5)

d

dt
P (t | tk) = XS(t | tk)AXT

f (t | tk) +Xf(t | tk)AXT
S (t | tk)+

+G(t)Q̂(t)GT (t), tk ≤ t ≤ tk+1, (6)

where the transformed set of vectors is identified as

Xf (t | tk) =
[

f
(

xs
0(t | tk), u(t)

)

| f
(

xs
1(t | tk), u(t)

)

| . . .

. . . | f
(

xs
2n(t | tk), u(t)

)]

n×(2n+1)
,

sigma points xs
i (t | tk), i = 1, n are computed in accordance with the following formula

xS
i (t | tk) =







x̂(t | tk), i = 0,

x̂(t | tk) +
√
n+ lDi(t | tk), i = 1, n,

x̂(t | tk)−
√
n + lDi−n(t | tk), i = n+ 1, 2n,

(7)

XS(t | tk) =
[

xS
0 (t | tk) | xS

1 (t | tk) | . . . | xS
2n(t | tk)]n×(2n+1),

Di is the i-th row of the lower triangular matrix obtained by the Cholesky decomposition
P (t | tk).

Updating:

• Find the set XS(tk+1 | tk) using (7) with the substitution t = tk+1.
• Calculate

Yh(tk+1 | tk) =
[

h
(

xS
0 (tk+1 | tk)

)

| h
(

xS
1 (tk+1 | tk)

)

| . . .

. . . | h
(

xS
2n(tk+1 | tk)

)]

m×(2n+1)
,

ε(tk+1) = y(tk+1)− Yh(tk+1 | tk)a,

τk =
1− b

1− bk+1
,

R̂(tk+1) = (1− τk)R̂(tk) + τk

[

ε(tk+1)ε
T (tk+1)−
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−
2n∑

i=0

βi

(

h
(

xS
i (tk+1 | tk)

)

− Yh(tk+1 | tk)a
)(

h
(

xS
i (tk+1 | tk)

)

− Yh(tk+1 | tk)a
)T]

,

PY (tk+1) = Yh(tk+1 | tk)AY T
h (tk+1 | tk) + R̂(tk+1),

PXY (tk+1) = XS(tk+1 | tk)AY T
h (tk+1 | tk).

• Given these predicted values, the state x̂(tk+1 | tk+1) and covariance estimates P (tk+1 |
tk+1) are computed according to the equations

K(tk+1) = PXY (tk+1)P
−1
Y (tk+1),

x̂(tk+1 | tk+1) = x̂(tk+1 | tk) +K(tk+1)ε(tk+1),

P (tk+1 | tk+1) = P (tk+1 | tk)−K(tk+1)PY (tk+1)K
T (tk+1),

Γ(tk+1) =
(

GT (tk+1)G(tk+1)
)
−1

GT (tk+1),

Q̂(tk+1) = (1− τk)Q̂(tk)+

+Γ(tk+1)
{

τk

[

K(tk+1)ε(tk+1)ε
T (tk+1)K

T (tk+1) + P (tk+1 | tk+1)−

−
2n∑

i=0

βi

(

f
(

xs
i (tk+1 | tk), u(tk+1)

)

− x̂(tk+1 | tk)
)(

f
(

xs
i (tk+1 | tk), u(tk+1)

)

−

−x̂(tk+1 | tk)
)T ]}

ΓT (tk+1).

The cost function (3) is known to have many local optima. There are many algorithms
available for this kind of problems, for instance, Newton’s method and various quasi-
Newton methods, which are the local ones. In case of using a gradient based local
optimization method there is the large risk that the minimum found is not the global
one, unless the initial values are chosen close enough to the global minimum. In general,
if the obtained parameters estimates give a bad fit, there is no way to understand if the
reason is either the convergence to a local minimum or the insufficient model structure.
One approach to solving these problems with many local minima is to use the global
optimization methods. To find the optima of the problem (3), in this work the global
optimization approach based on the SQP method is used.

2. Simulation Results

Consider the following model of a stochastic nonlinear continuous-discrete dynamic
system:

d

dt
(ṙ(t)) = − µME

‖r(t)‖3 r(t) + g1(r(t)) + g2(r(t))+

+g3(r(t), ṙ(t), θ) + w(t), t ∈ [t0, tN ], (8)

s(tk+1) = r(tk+1) + ν(tk+1), k = 0, 1, . . . , N − 1.

Here r(t) = (x(t), y(t), z(t))T is the coordinate vector of the navigation satellite in
an inertial coordinate system; ṙ(t) = (Vx(t), Vy(t), Vz(t))

T is the velocity vector of the
navigation satellite in an inertial coordinate system; µ is the gravitational constant; ME is
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the mass of the Earth; ‖r(t)‖ =
√

x2(t) + y2(t) + z2(t) is the radius of the orbit; g1(r(t))
is the perturbations, caused by the non-sphericity of the Earth’s geopotential (see, for
example, O. Montenbruck [14]); g2(r(t)) is the perturbations, caused by the gravitational
influence of the Moon, the Sun and/or the other planets (also see O. Montenbruck [14]);
g3(r(t), ṙ(t), θ) is perturbations from the solar radiation (SR); s(tk+1) is the measurement
vector.

To compute g3(r(t), ṙ(t), θ) in an inertial coordinate system, the following SR model
in the object-centered coordinate system has been used (this model has been prepared in
the processing centers of the International GNSS Service):

g(xoc(τ), yoc(τ), zoc(τ), θ) = c · Λ(xoc(τ), yoc(τ), zoc(τ)) · ρ−2(xoc(τ), yoc(τ), zoc(τ))·
·[xoc(τ) · (θ1 + θ2 cosσ(xoc(τ), yoc(τ), zoc(τ)) + θ3 sin σ(xoc(τ), yoc(τ), zoc(τ)))+

+yRP (τ) · (θ4 + θ5 cosσ(xoc(τ), yoc(τ), zoc(τ)) + θ6 sin σ(xoc(τ), yoc(τ), zoc(τ)))+

+zRP (τ) · (θ7 + θ8 cos σ(xoc(τ), yoc(τ), zoc(τ)) + θ9 sin σ(xoc(τ), yoc(τ), zoc(τ)))]. (9)

Here xoc(τ), yoc(τ), zoc(τ) are the coordinates of the satellite in the object-centered
coordinate system; c is the factor depending on the form of the satellite, its mass,
reflectivity and absorption of the materials of its surface; Λ(roc(τ)) is the eclipse factor;
ρ(roc(τ)) the distance between the satellite and the Sun; σ(roc(τ)) is the argument of the
latitude for the navigation satellite.

Usually, the following parameter values are considered (see, for example, J. Kouba [15])

θ̂1 = (θ̂11, θ̂
1
2, θ̂

1
3, θ̂

1
4, θ̂

1
5, θ̂

1
6, θ̂

1
7, θ̂

1
8, θ̂

1
9) = (1, 0, 0, 0, 0, 0, 0, 0, 0).

As the measurement data we have taken the rapid ephemeris of the GPS from July 14,
2016, obtained by the international GNSS service. In this case, the satellite makes more
than one revolution around the Earth (passes through the various light zones). At the
initial time, we compute the velocity of the satellite on the basis of rapid ephemeris using
Everett interpolation. Estimation of the SR parameters of the model (9) can be carried out
using the maximum likelihood method according to the trajectory observations in areas
of total illumination and penumbra zones. As the result, we have obtained the following:

θ̂2 = (θ̂21, θ̂
2
2, θ̂

2
3, θ̂

2
4, θ̂

2
5, θ̂

2
6, θ̂

2
7, θ̂

2
8, θ̂

2
9) = (1, 06906362, 0, 06858372, 0, 04729392,

0, 11131100, 0, 06708731, 0, 09272575, 0, 09483054, 0, 13523427, 0, 10924206).

To compare the predicted trajectories of the PG01 satellite orbital movement with the
final ephemeris from July 15, 2016 we have computed δ1s , δ

2
s

δis =

√
∑N−1

k=0 ‖s(tk+1)− ŝi(tk+1)‖2√
N

, i = 1, 2,

where ‖·‖ is the Euclidean vector norm; {s(tk+1), k = 0, 1, . . . , N−1} is the final ephemeris;
{ŝ1(tk+1), k = 0, 1, . . . , N − 1} is the predicted trajectory for the filter equation at θ̂1;
{ŝ2(tk+1), k = 0, 1, . . . , N − 1} is the predicted trajectory for the filter equation at θ̂2.

Finally, we have obtained δ1s = 8, 6228e−06 km., δ2s = 3, 9537e−08 km. Thus, the result
of the sunlight SR parameters specification is that it is possible to significantly increase
(by two orders of magnitude) the accuracy of the satellite trajectory forecasting. Figure
represents the obtained results. The i-th curve in the figure corresponds to ‖s(tk+1) −
ŝi(tk+1)‖.
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The norms of the residuals for predicting the motion of PG01 at θ̂1 and θ̂2

Conclusion

In this research, the statistic estimator based on the CD-AUKF with noise is used for
the nonlinear continuous-discrete systems parameters estimation. This approach improves
the robustness of the conventional UKF with the respect to the variable noise distribution.
The results show that in case of uncertain or time-varying noise statistic the adaptive
UKF is more efficient than the conventional UKF in terms of the fast convergence and the
state estimation accuracy. Such efficiency is achieved due to applying the noise statistic
estimator for the noise statistic calibration.

Using the developed parametric identification procedures allows finding the estimates
of the solar radiation parameters of the spacecraft motion model in the inertial coordinate
system. The accuracy of the navigation satellite motion prediction has been significantly
improved.
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ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ НА ОСНОВЕ
АДАПТИВНОГО СИГМА-ТОЧЕЧНОГО ФИЛЬТРА КАЛМАНА

В.М. Чубич1, О.С. Черникова1

1Новосибирский государственный технический университет, г. Новосибирск,
Российская Федерация

Представлен подробный алгоритм адаптивного сигма-точечного фильтра Калма-

на. Приведена пошаговая схема алгоритма фильтрации, используемая при решении

задачи параметрической идентификации стохастических непрерывно-дискретных си-

стем. На примере математической модели движения навигационного спутника пока-

зана эффективность процедуры параметрической идентификации с использованием

адаптивного сигма-точечного фильтра Калмана. Полученные результаты позволяют

значительно улучшить качество прогнозирования траектории движения спутника.

Ключевые слова: нелинейная стохастическая непрерывно-дискретная система;

адаптивный сигма-точечный фильтр Калмана; параметрическая идентификация;

метод ML; модель движения космического аппарата; модель солнечного излучения.
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