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Our goal is to find a model for the phenomenon of spontaneous symmetry breaking
arising in one dimensional quantum mechanical problems. For this purpose we consider
boundary value problems related with two interior points of the real line, symmetric with
respect to the origin. This approach can be treated as a presence of singular potentials
containing shifted Dirac delta functions and their derivatives. From mathematical point of
view we use a technique of selfadjoint extensions applied to a symmetric differential operator
which has a domain containing smooth functions vanishing in two mentioned above points.
We calculate the resolvent of corresponding extension and investigate its behavior if the
interior points change their positions. The domain of these extensions can contain some
functions that have non differentiability or discontinuity at the points mentioned above,
the latter can be interpreted as an appearance of singular potentials centered at the same
points. Next, broken-symmetry bound states are discovered. More precisely, for a particular
entanglement of boundary conditions, there is a ground state, generating a spontaneous
symmetry breaking, stable under the phenomenon of decoherence provoked from external
fluctuations. We discuss the model in the context of the “chiral” broken-symmetry states of
molecules like N Hs. We show that within a Hilbert space approach a spontaneous symmetry
breaking disappears if the distance between the mentioned above interior points tends to
ZEero.

Keywords: operator theory; resolvent; solution of wave equation: bound states;
spontaneous and radiative symmetry breaking.

Introduction

We introduce in this paper a new mechanism for spontaneous symmetry breaking, with
applications to molecular physics. We discuss it on one dimensional quantum problems.
It is based on nontrivial boundary conditions which we describe as an “entanglement
of boundary conditions”. The motivation for our proposal is on the study of symmetric
potentials, under parity, where the stable quantum ground state is not symmetric, but
it is right or left-handed. This situation occurs in many molecules with symmetric
configurations of the nuclei of the atoms, where the ground state is right or left-handed.
Moreover, the ground state is even not an eigenstate of the Hamiltonian. A typical
example is the molecule NH3. Its quantum potential contains two symmetric attractive
minima with a repulsive barrier between them. The ground state is non-degenerate and
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right or left-handed. The main point is that a non-degenerate eigenstate of a symmetric
Hamiltonian must either be symmetric or antisymmetric under parity transformations.
However, external perturbations change the phase of a symmetric or antisymmetric state
giving rise to an unstable incoherent mixture of both. This effect is known as decoherence,
see [1] and for a review [2]. On the other side, a state concentrated only on one side of
the repulsive barrier would be stable under external perturbations, but not necessary an
eigenstate. In that case it is unstable under the time evolution dictated by the Schrodinger
equation. It would evolve from a right-handed to a left-handed state and vice versa, since
it is not an eigenstate, becoming unstable after a period of time. Nevertheless, if the
repulsive barrier is high enough this scenario occurs after so large time that approximately
the state of the molecule is concentrated on the right or left side of the repulsive barrier
with a very large decaying process. This argument explains the existence of right or left-
handed states in nature. In this paper we present a nonlocal interaction described by an
entanglement of boundary conditions such that the corresponding symmetric Hamiltonian,
for a particular value of the parameters describing the interaction, has a degenerate ground
state. It is a linear combination of a right and a left-handed eigenstate. In addition, when
we consider the phenomenon of decoherence the only stable eigenstate under external
fluctuations corresponds to the left-handed or right-handed states. In distinction to our
previous argument the stable ground state is now an exact eigenstate. So, our proposal
fulfils both stability criteria. It is stable under external perturbations, since it is a left or
right-handed state concentrated on one side of the barrier and stable under time evolution,
since it is an eigenstate of the Hamiltonian. Our model describes the barrier in terms of
the Dirac delta distribution, more precisely in terms of the derivative of it. The use of
the Dirac delta distribution has been used with success in order to describe approximate
potentials, see [3-11]. In our proposal the potential is modeled by two derivatives of the
Dirac delta separated a distance 2h among them. The coefficients of each derivative of the
delta depends on the boundary condition on the wave function at the other derivative of
the delta. It is an entanglement of boundary conditions. The Hamiltonian we introduce
is then symmetric under parity transformations and self-adjoint. Its ground state is an
exact eigenstate concentrated on one side of the repulsive barrier. It is an interesting
case of spontaneous symmetry breaking. The mathematical approach we will follow in our
construction is a method of selfadjoint extensions of a symmetric operator.

Section 1 contains some known results concerning singular potentials in terms of
the delta function and a small discursion on the subject. In particular, we mention a
Hamiltonian whose ground state is degenerate, with two eigenfunctions, nevertheless,
there is no symmetry breaking in this case. Further, in Section 2 and 3 we present the
key contribution of the paper by introducing local and non-local potentials and discuss
their quantum properties. In particular, the existence of spontaneous symmetry breaking
is demonstrated in Section 2. In Section 3 we show that within a Hilbert space approach a
spontaneous symmetry breaking disappears if h — 0. Finally, we give our closing remarks
in Section 4.

1. Preliminary Remarks

Let us consider a well known case of a boundary value problem at the unique interior
point coinciding with the origin. So, let D = —d? - /dx? be the differential operator on the
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set
D(D) = {y(z)| y(x),y'(x),y"(x) € L*(R), y(0) = y'(0) = 0}.

Its adjoint one D* is the differential operator on the set

D(D") = {y(2)| y(x), ¥/ (2),y" (7)o, € L*(Ry), y(2),y/(2),y"(2)|e € L*(R-)},

where Ry = {z| z > 0} and R_ = {z| x < 0}.

For any selfadjoint extension D of D the relation D C D* holds. Thus, D C D C D*
and any extension of D can be treated as a restriction of D*. Direct calculations bring
(D*y, 2) = =y (=0)2(=0) + y/'(+0)2(+0) + y(=0)Z'(=0) — y(+0)'(+0) + (y, D"2).

The latter yields

y'(=0)2(=0) = ¥/ (+0)2(+0) — y(=0)Z'(=0) + y(+0)2'(+0) = 0 (1)

as a condition for the self-adjointness of the corresponding restriction. Since here boundary
values form a four-dimensional space, any selfadjoint restriction can be given by two linear
homogenous equations. In particular, the conditions (the same for y and 2) y(—0) = y(+0)
and % = 2¢ = const are suitable. Under these conditions the first derivative of y(t)
has a jump at zero. Therefore the second one treated as a distribution has a singularity
like the delta-function and the correspondmg extension D accepts a natural representation
Dy(z) = —y"(x) + 2¢ - y(0)d(z) = —y"(x) + 2¢ - y(2)d(z). For ¢ < 0 the operator D has
the negative eigenvalue A\ = —c? and the corresponding eigenfunction y(t) = e®l. These
facts are well known (see the monograph [12]). In the same book one can find a study
on singular potentials like shifted delta functions or their first derivative in finitely many
points, but this study touches only local boundary conditions.

The present work deals with a generalization of the described above scheme for a non-
local boundary problem at two points —h, h and a behavior of the corresponding operator
with two eigenfunctions if h — 0. We show that the process h — 0 eliminates one of these
eigenfunctions.

As it is well known, even for the one-point problem there are some selfadjoint
extensions with one or two negative eigenvalues wich involve naturally not only the delta-
function but its first derivative: the boundary conditions (a > 0, 5 > 0)

ay(+0) +y(=0)) = (= ¥'(+0) +y'(-0)), @)
B(y(+0) = y(=0)) = = (¥'(+0) +y'(-0)),
-0 +o0o
where [ (ly(z)]? +|y(z)|* + ly(x)"*)dz+ [ (Jy(z)]* + |y(x)'|* + |y(z)"|*)dz < oo, satisty
—o0 +0
Conditions (1), so the corresponding extension is selfadjoint. This case was analyzed in [13].
The extension D under discussion has two eigenvalues —a? and — 32, their corresponding
eigenfunctions are e~**l and Sgn (z)e~?I*l respectively, Sgn () = 1 for # > 0 and Sgn (v) =
—1 for x < 0, D is the selfadjoint Hamiltonian with Representation

% () (5 (~0) + 3/ (+0)) — - 6(x) (y(~0) + y(+0)).

Our principal interest leads to the case v = . Indeed, the latter yields that —ao?
is the unique negative eigenvalue and has two non symmetric eigenfunctions y;(x) =

Dy(z) = —y"(x) -
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(1 —Sgn (z))e* and ya(x) = (14 Sgn (x))e~**. But still, the case under discussion cannot
be treated as a model giving rise to a spontaneous symmetry breaking. Indeed, this case
must be considered as a non transitable barrier because Conditions (2) yield « - y(—0) =
y'(—0) and « - y(4+0) = —y'(4+0), so waves on R_ and R, are independent.

2. Basic Results

2.1. General Setting
If the differential operator D = —d? - /dx? acts on the real line R with domain

D(D) = {y(z)| y(x),y'(z),y"(z) € L*(R), y(=h) = y/(—=h) = y(h) = y(h) = 0},

then for the adjoint operator D* we have

D(D*) = {y(x)\ y(x),y'(x) are absolutely continuous on
(_OO _h) U( hv h) ( ) y( ) S L2(R)7 (3)
y/(l‘)‘( 00, h)vy//(x)‘( 00,—h) € LQ((_OO7_h)>7
V'@l € L1 1)), (@) 00 8" @)ooy € L2((R,00)) |

and
(D*y, 2) = (y, D*2) = =y'(=h = 0)2(=h = 0) + ¢/(=h + 0)Z(=h + 0)—
—y'(h —0)z(h — O)+y (h4+0)2(h 4+ 0) +y(=h —0)Z'(=h — 0)—
—y(=h+0)Z(=h+0) +y(h—0)Z'(h—0) —y(h +0)Z'(h + 0).
The latter means that a selfadjointness for a restriction of D* holds if and only if the
set of corresponding boundary conditions is minimal (four equations only) and yields

y'(—h—0)Z2(—h —0) + ¥ (=h +0)2(—=h + 0)—

—y'(h—0)Z(h —0) +y'(h+0)Z(h + 0)+ (4)
+y(—h —0)Z'(=h —0) —y(=h + 0)Z'(=h + 0)+

+y(h—0)Z'(h —0) —y(h+0)Z'(h+0) =0.

Designing selfadjoint restrictions of D* we can, in particular, assume
y(=h = 0) =y(=h+0), y(h—0)=y(h+0), ()
that means the continuity of y (and, of course, z). Then condition (4) takes the form

(¥ (=h +0) =y'(=h = 0))2(=h) + (y'(h + 0) — y/'(h — 0))z(h)— (6)
—y(=h)(Z(=h +0) = Z(=h — 0)) — y(h)(Z'(h + 0) — Z'(h — 0)) = 0.

An essential part of this case (including an entanglement of boundary conditions) was
analyzed in [14]. In particular, it can be shown that under some restrictions and h — 0
conditions (5), (6) convert to conditions (2). Next, it is well known how to calculate
the resolvent for the selfadjoit differential operator D,., given by the formal differential
expression D,., = —d? - /dt, acting on the real line R and having the domain D(D,.,) =

=t
{y®)] y(t),y'(t),y"(t) € L*(R)}. Let G(t) =

62 . Then for every z(t) € L*(R) and v > 0
Y

400
(VI + Dyey) '2(t) = / 2(T)G(t — 7)dT. (7)
—0o0
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Note that D,., represents the restriction of D* that (see (4)) corresponds to the boundary
conditions

y(=h—0)=y(=h+0), y(h—0)=y(h+0), (8)
y(=h—=0)=y(=h+0), y'(h—0)=y(h+0).

2.2. An Entanglement of Boundary Conditions for the Continuous First
Derivative

Now, we will drop out conditions (5). Alternatively, we assume that both derivatives
y" and 2’ are continuous at points —h and h. Then condition (4) converts to

y'(=h)(=2(=h—=0)+ z2(=h +0)) +¥/'(h) (=2(h — 0) + Z2(h + 0)) +
+ (y(=h = 0) —y(=h+0)) Z'(=h) + (y(h — 0) —y(h + 0)) Z'(h) = 0.

Designing the selfadjoint restrictions of D* we assume that

G ) Cian)) = (Y20 0 o) ‘

The planning restriction will be selfadjoint if and only if the matrix

bu bio
B =
(521 bas
is symmetric. Let a function y(z) satisfy Conditions (9). If we consider it as a generalized

function (distribution), then y”(x) = y/(x) + (b11y' (=h) + b2y’ (1))’ (x4 h) 4 (bary'(—h) +
baoy'(h))d'(x — h), where

~—

cl

() = {O, if f”(z) has no sense in the classical approach;

f"(x), in the opposite case.

Using this notation, the extension 5h of the operator D can be presented as

Duy(w) = =y"(x) + (buay/(=h) + biay' ()8 (x + h)+
—f-(bgly,(—h) + bggy,(h))(sl(l' — h) .

This is the image of the Hamiltonian, for a suitable matrix B which we will determine
below, of our proposal acting on a wave function y(x) for the quantum mechanical problem
discussed in the introduction based on the molecular structure of N H5. When b1 = by and
bia = by it is invariant under parity transformations, in fact, if u(x) is an eigenfunction
so is u(—x) with the same eigenvalue.

Let a matrix B be such that for every positive A the function

(10)

e, x < —h;
efah(efax + ea:t)
onla) = ~CIET ) e (o (1)
e~ x> h;

represents an eigenfunction of the operator 5h. Direct calculations show that the

h
. . . . —ah
corresponding eigenvalue is A = —a?. For any h the equality [ ¢p(z)dx = —QGT holds,
—h
Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 9

u nporpammupoBanues> (Becruunk FIOYpI'Y MMII). 2020. T. 13, Ne 3. C. 5-16



A. Restuccia, A. Sotomayor, V.A. Strauss

so in terms of distributions hlimo on(x) = fo(x) — 26(x) with fo(x) = e=*l, therefore the
-+

limit can generate (maybe) a new boundary problem, that directly involves §(z), but it is
impossible within the frame of L?(R). Next, using (9) and (11) we have

2 2
—m =a- (bn - 512)7

m = Q- (bgl — bgg).
B is symmetric and therefore the last system yields b;; = by and ba1 = b1a.

B is not yet completely determined, so we can assume that D, has an eigenvalue
u = —p3%If 4 # a and an eigenfunction 1, (x) corresponds to u, then ¢,(z) and ()
are orthogonal. The latter would be fulfilled if ¢, (x) is odd. We put

e’ r < —h;
) e (e 4 P

i) = CECETE) e (12

—e Pz x> h
Due to (12) we have —% =B-e P (b + b1o), —% = B-e " (by + by). So

1 1

by =byy = — +
al — e—2eh 14+ e28h) )7

=) T o) "

b21 - b12 = &(1 . 6720[}1) - /8(1 + 672ﬁh)

The locality of this interaction is equivalent to the condition b1 = by = 0. Thus,

1 1

ol —e=20h) — (1 + e26h)

Evidently, 8 < 8- (14 ¢e72°") = a - (1 — e72%") < a. This means that the local interaction
determines the non-degenerate ground state given by (11).
Our principal interest corresponds to the case a = . Due to (13)

-2 2e~2h
—dah)’ b12 = —dah)
a(l — e—4ah) a(l — e—4ah)

The latter brings b2 > 0, so we have an entanglement of boundary conditions.
Furthermore, any ground state is a linear combination of (11) and (12) and can be
asymmetric. In particular, ¢, + 1, is an eigenstate with the wave function concentrated
on r < h and ¢, — 1, is an eigenstate with the wave function concentrate on x > —h.
In addition, when we consider the phenomenon of decoherence the only stable eigenstate
under external fluctuations corresponds to ¢y + ¥y, or ¢, — 1y, the left handed or right
handed ground states. In distinction to what occurs in the argument presented in the
introduction, the stable state is an exact eigenfunction and hence it is also stable under
the time evolution. Consequently, the entanglement of boundary conditions gives rise to
spontaneous symmetry breaking of the parity symmetry of the Hamiltonian (10).

Note that b11,b12 — 0 and Zi—f — 0 by a — 00, so for a big enough the violation of
locality in (8) is relatively small. In the opposite case, if « — 0, then b1, b2 — oo and
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Zﬁ — —1, so in this case the entanglement between the points —h and h is quite strong.

The same effect takes place if o is a constant but A~ — 0, that is natural. R
The extension of D that corresponds to (13) will be denote by Dj. In

the case of D), Expression (10) can be re-written as Dyy(z) = —y"(z) +
(3w —h) = (et )W)~y (k) @t h)+ 5= )R )
a(l — e=2ah) B(1+ e26h) :

the strict point of view the latter expression has no limit if 1 — 0 because the domain of
Dy, depends on h and the eigenfunction ¢y, (x) does not converge to any function in L*(R).

3. Limit Pass: a Hilbert Space Approach

Since the operator ﬁh is unbounded, the limit of ZA)h will be substituted by the limit
of its resolvent. Let us calculate the resolvent of Dj, for a fixed real point —2%, v > «,
v > [ and investigate its behavior for A — 0, the calculation will be based on Formula (7).
Both operators lA)h and D,, are restrictions of D*, therefore for their domains Conditions
(3) are fulfilled. Moreover, if y(t) € Dy, N D, ., then Conditions (8) and (9) are fulfilled
simultaneously, y(t) as absolutely continuous and

Yy (=h) =y'(h) =0 (15)

vice versa, if Conditions (15) hold, then y(t) € D(D,,) <= y(t) € D(Dy,).
+oo

Let z(t) € L*(R) and y(t) = /Z(T)G(t — 7)d7. Then y(t) € D(D,ey) and y'(t) = —v -

JrfooZ(T)G(t — 7)Sgn (t — 7)dr. Let 2(t) be such that
oo +oo
/ 2(1)G(—=h — 7)Sgn (—=h — 7)dT = / 2(1)G(h —7)Sgn (h —7)dr = 0.

Then Conditions (15) are fulfilled, so y(t) € D(D,¢y) N D(f)h) and due to (7) (72 +
Dh)y(t) = (72[ + Dreg)y(t> - Z(t) ThU.S7

(v + Bh)_lz(t) =y(t) = / 2(T)G(t — 7)dT . (16)

Let us introduce some notations. We put
sp(t) = G(—=h —t)Sgn(—h —t) — G(h —t)Sgn (h — 1),
wp(t) = G(—h —t)Sgn (—h —t) + G(h — t) Sgn (h — t),

(

K ={f(t): f(t) € L(R), f(t) L sn(t), f(t) L wn(t)}

and denote by Ly, the linear span of ¢p(t) and v, (t). Then (note that this decomposition
is not orthogonal)

L*(R) = Ky+Ly . (17)
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Let n, = f sp(t)on(t)dt and 6, = f wp () (t)dt. Then for every f(t) € L*(R) the

decomposmon (17) takes the form

76 = (70 ¢h /f

Thus (16) e
(v*I + Dy,) "1 f(1) </f(T)G(t—T)dT—
J on(r)G(t=T)dT s T on(n)G—r)dr +x
_ - f)sp(t)dt + = 0 f () wy(t)dt )+ (18)

+7_Oé2 /f dt+ /fwh

A simple transformation gives

(At o (At
e smh(vh)7 t< e cosh(vh)7 t<
Y v
M cosh(yt M sinh(yt
R N R e Y
e smh(vh)’ > e cosh(vh)’ E>h
\ g . v

The direct calculation brings

2sinh(ﬂyh) e~ (ath e~ (atnh {sinh(& +v)h  sinh(y — &)h}

PTETST Tawy T ysi(ah) U (@) (r—a)
9. — 2cosh(’yh) e~ (B+nh N e~ (B+Mh {sinh(ﬁ +7)h  sinh(y — ﬁ)h}
" v B+~ ycosh(Bh) (B+1) (v=6) S
2
SO }llli% Ny = 7_04 and }llli% 0y, = T 7). Our aim is to investigate the behavior of (y*I +

Dy)~* for h — 0. Let us analyze the term ¢y,(t) - / f(t)sp(t)dt from (18). First, we have

1 1 sinh(2ah 1/2
|Pnll22®) = efah{— + — : ( (2ah) +h) } ;

«  sinh*(ah) 20
(19)
e Th sinh(2vh) 1/2
HmmR:——{mwwm+(————+m Ve
WA 2
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Thus, lim [[¢p]| 12y = 00, lim [|sn[| 2@y = 0, lim [|dn]| L2gm) - [|snll 2 = = # 0. Second,
for every fixed f(t) € L*(R) we have

~+oo —h +h
F@sn()dt) < | [ f@)sn(t)dt| + | [ f(t)shn(t)dt| +
[romie< | s ]

1/2

400 _h 1/2 _h
+ [ [ f)sa(t)dt]| < | f(t)[2dt . sn(®)2dt |+
Jr{ / / 1/2

1/2 oo
7\f(t)\2dt / saHde |+ / R / sa®dt| = (20)

h
/|f OPdr | SR /|f )Pt
1/2

—~h inh(2 1/2 inh )
K Vh (sm (2vh) N 1) N / )Pt _sinh(yh) - e '
g 2vh V2

+h
Since }llirr(l] [ |f(@#)?dt = 0, estimation (20) and equalities (19) bring the equality }llir% ||dn(t)-
-0, —

/ f(t)sp(t)dt|| = 0. The latter brings the equality (the limit is treated in the sense of

norm topology)

hm(’yQI—l—D /f G(t—T)dr —
+o0
(B +7) / e A7l Sen (1)G(t — 7)dr / f(#)G(t) Sgn (t)dt+

e Pl Sgn
+(y————= ” Sg /f t) Sgn (t)dt) .

As one can observe the operator-limit lost the eigenvalue —~— — and the corresponding even
eigenfunction. This limit was taken in strong operator topology and the corresponding limit
in norm operator topology does not exist at all. It seems that the operator-limit has some
kind of escaping eigenfunction that cannot be detected within the space L*(R).

Closing Remarks

In this paper, we analyzed through a method of selfadjoint extensions for symmetric
operators a new quantum interaction, realized as an interaction of the type of derivatives
of two shifted Dirac distributions. These distributions, with adequate coefficients, are
concentrated in two symmetric points h and —h respectively, ensuring the corresponding
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Hamiltonian operator to be selfadjoint. We analyzed the boundary conditions which
preserve the Hamiltonian, under parity transformations, and consider first those for which
the interaction remains to be a local one. In this setting the discrete spectrum is constituted
by an even or symmetric state and an odd or antisymmetric state (all of this under parity),
with the ground state associated with the former of them. There exist also boundary
conditions which imply a non-local interaction. We called it an entanglement of boundary
conditions. In this case we obtained a degenerated ground state with the wave function
concentrated on one side of the interaction zone, being zero on its complement. These are
the left-handed and the right-handed states, and any linear combination of them remains
an eigenstate with the same eigenvalue. However, when external perturbations on the wave
function are taken into account, which inevitable occurs, the only stable states are just
the left or the right-handed ones. The other eigenstates, because of the decoherence fact,
rapidly become an incoherence mixture of even and odd states. An spontaneous symmetry
breaking is then produced by the entanglement of boundary conditions It is interesting
that this effect is obtained for a finite coupling constant term on the derivative of the Dirac
distribution, in distinction to the case of a local interaction, where the only case in which we
have spontaneous symmetry breaking corresponds to an infinitely high and thick barrier.
If we visualize it in terms of a local Dirac interaction, the coupling of it must necessarily
go to infinity. We applied the non-local interaction to give a qualitative description of the
molecular structure of NH3. We compared our argument based on exact energy eigenstates
to the well-established one, for which the left and the right-handed states are only nearly
energy eigenstates. Finally, we showed that within a frame of Hilbert spaces the even
eigenstates disappear if h — 0.
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O MOJEJIN CITIOHTAHHOI'O HAPYIIEHU A CUMMETPUN
B KBAHTOBOII MEXAHUKE

A. Pecmycusa'?, A. Comomadtiop', B.A. IlImpayc*?

YVnusepcurer Anrtodaractsl, . Antodaracra, Peciybamka Yuin
2Vuusepcurer Cumvon Bosmsap, r. Kapakac, Benecysia

3VIbAHOBCKHIT TOCYIAPCTBEHHBIH e JarOITYeCKIi YHIUBEPCUTET, T. Y/IbIHOBCK,
Poccuiickas @eiepartiust

Uccnenyercst cnoHTaHHOE HAPYIIEHWE CUMMETPUUA B OJITHOMEPHONW KBAHTOBOMEXAHUIE-
coit mpobJieMe B TepMUHAX JIBYXTOUYETHON IPAHUIHON MPOOIEMBI, BEIYIIEHl K CHHTYITHBIM
[TOTEHITUAJIAM, COJIEPXKAIINM CIABUHYThIE JIeJIbTa~-(QyHKIUN U UX npou3Boaabie. C MaTeMaTu-
4eCKOUW TOYKM 3PEHUHA IIPU ITOM HCIOJb3YeTCsd MeTOJ] CaMOCOIPAXKEHHBIX DPaCIIMpeHHit
CUMMETPHUIECKOr0o IudepeHIInaILHOTO OIlEPaTOpa, 3aJaHHOIO Ha IVIQJIKUX (PYHKIUIX C
HHTErPUPYEMBIM KBaJIPATOM MOJYJIsA, OOHYJISIIOIIUXCS BMECTE CO CBOE€i IIePBOl IIPOU3BOI-
HON B JIByX BHYTPEHHUX TOYKAX BEIIECTBEHHON mpsaAMOil. Mbl HAXOIMM PE30JILBEHTY st
TAKUX PACIHINPEHUI W OIEHWBAEM ee IOBEeJIeHNEe IIPU M3MEHEHHU II0JI0KEHUs! YKa3aHHBIX
rovyek. ObsracThb ompeiesienns MOOOHBIX PACIIUPEHUN MOXKET COJepKaTh (DyHKIMU, Tep-
OgIpe Pa3pblB M/ WM MMEIOIIUEe Pa3PhIBHYIO IPOU3BOAHYIO B TOYKAX, YKA3AHHBIX BBIIIE,
HOCJIe/IHee MOYKET UHTEPIPETUPOBATHCS KAaK IIPUCY TCTBUE B3ANMO3aBUCUMBIX (CIEIIJIEHHbIX )
CUHTYJIIPHBIM TIOTEHIINAJIOB, COCPEJIOTOYEHHBIX B TEX 2Ke ToYKax. Harma 1ejap — Hafitu cBs-
3aHHBbIE COCTOSIHUS C HAPYIIEHHON cuMmMeTpueii. [l 9acTHOro Ciiydas B3aMMO3aBHCHMBIX
TPAHUYHBIX YCJIOBUU MBI JOKa3bIBaeM CYIIeCTBOBAHUE CBA3aHHOI'O COCTOSIHUS, IIPUBOJISIIIE-
ro K CIOHTAHHOMY HAPYIIEHUIO CUMMETPHUH, CTAOMIILHOMY 10 OTHOIIEHUIO K (DEHOMEHY Iie-
KOPEPEHINH, [TOPOXKIEHHON BHemHUMY (uryKTyarusiMu. Mbl 06cyKaeM IIpeicTaBIeHHY 0
MO/IeJIb B KOHTEKCTe <KUPAJIbHBIX> CBA3aHHBIX COCTOAHUI C HapyIIEHHOII cUMMeTpueil Mo-
Jsiekyst, Takux Kak N Hz. [lokazaHo, 9T0 B paMKax TeOpUH I'mjibOEPTOBBIX IIPOCTPAHCTB 3TOT
s dekT ncaesaer npu 0OHYJIEHUN PACCTOSIHUS MEXKJIy YKA3aHHBIMU BBIIIE TOIKAMU.

Karouesvle €08a: CamMOCONPANCERHDIE PACUUPEHUSA CUMMEMPUYECKO20 Juddepentyu-
aAbHOZ0 ONEPATNOPA; PE3OABEENMA; PEULEHUE BOAHOE020 YPAEHEHUA! CEA3AMHBLE COCTNOAHUA;
cnowmantoe Ut PadUAUUOHHOE HAPYWEHUE CUMMEMPUL.
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