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Application of projective normalization (a special case of orthocorrection and
perspective correction) to photographs of documents for their further optical recognition is
generally accepted. In this case, inaccuracies of normalization can lead to recognition errors.
To date, a number of normalization accuracy criteria are presented in the literature, but
their conformity with recognition quality was not investigated. In this paper, for the case of
a fixed structured document, we justify a uniform probabilistic model of recognition errors,
according to which the probability of correct recognition of a character abruptly falls to zero
with an increase in the coordinate discrepancy of this character. For this model, we prove
that the image normalization accuracy criterion, which is equal to the maximal coordinate
discrepancy in the text fields of a document, monotonously depends on the probability of
correct recognition of the entire document. Also, we show that the problem on computing
the maximal coordinate discrepancy is not reduced to the nearest known one, i.e. the linear-
fractional programming problem. Finally, for the first time, we obtain an analytical solution
to the problem on computing the maximal coordinate discrepancy on a union of polygons.

Keywords: orthocorrection; perspective correction; image projective normalization;
optical character recognition; accuracy criteria; coordinate discrepancy; monlinear
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Introduction

Image Projective Normalization

Using calibration [1], almost any imaging optical system (hereinafter referred to as a
camera) can be reduced to an orthoscopic one, i.e. a system satisfying a projective model
of a camera [2]. In the framework of this model, an arbitrary scene plane is associated
with the image plane by a projective transformation.

A shooting angle with respect to the flat scene is called normal if the imaging optical
system is oriented normal to the scene. The projective transformation of an image taken
from an arbitrary angle ensures an imitation of an image taken from a virtual normal
angle based on the image taken from an arbitrary angle. Following [3], we refer to such an
imitation as an image projective normalization (IPN). An image obtained as a result of
IPN is called normalized. A normalized image is orthoscopic, i.e. the image of a flat scene
on the normalized image is similar to the scene itself. This fact fundamentally simplifies
further analysis of the scene. As a rule, IPN requares not only consider the virtual camera
angle to be normal, but also fix some of remaining degrees of freedom of the camera (solid
body), which appear as isotropic scaling, shift, and orientation of the normalized image.

Projective normalization is actively used as a stage of image preprocessing for solving
various problems of technical vision such as recognition of text content of documents
[4-8], car number recognition [9], automatic recognition of a television program by a
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picture of TV screen [10], checkerboard detection to calibrate a camera [11], detection of
artificial roughness on roads [12], matching of the contour of an object represented in the
image with an object in the database [13-18], satellite monitoring (estimation of temporal
variability of the ocean surface temperature, determination of the speed of movement of
cloud masses, etc.) [19], drawing up plans and maps of the area based on the results of
aerial photography [20,21], etc. In addition, projective normalization of a photograph of
a document is applicable to facilitate perception by a person [22].

Accuracy Criteria of Image Normalization

As shown above, IPN is used as a stage of image preprocessing for solving many
problems of technical vision. Any IPN methods work with errors, and the properties of
these errors are different for different methods. Therefore, for different problems taking
place in technical vision, different IPN methods may be preferable from the point of view
of the quality of solution. In order to select or develop an optimal method for specific
problems, appropriate problem-oriented criteria for the accuracy of IPN are needed. A
large number of normalization accuracy criteria are proposed in the literature, but the
question of their focus on solving particular computer vision problems was not investigated.
This casts doubt on correspondence of the developed IPN methods to the problems facing
the methods. In this paper, we aim to fill this gap.

Definitions and Notations

Let Iinpue be an image for projective normalization, which is a photograph usually.
Assume that the projective transformation H, which defines the ideal normalization of the
image linput, is known. We consider only cases when H is unique. Such a transformation
is set expertly and is used as an ideal answer when testing IPN methods. Let [ligea be
the ideally normalized image formed as a result of applying H to Lipu (see Fig. 1), H
be the estimate of the transformation H obtained by the IPN method, and Ijac be the
practically normalized image formed by applying H to Tinput.-

Denote by r oo [x y]T the Cartesian coordinates of pixels on the plane of the image

Ligeal- Also, define the residual projective transformation V o PIH’l, which, for each
point of the scene, associates the coordinates r of the image of the point on Iigea with the
coordinates V(r) of the image of the point on /.. In order to formalize the point-by-point
error of the IPN, we introduce the coordinate discrepancy [23| (see Fig. 2):

d(r) = r = V()] (1)
In this paper, for brevity, we sometimes refer to the coordinate discrepancy as a
discrepancy. Denote by R C R? the region of interest, i.e. the previously known set of
the points of ligeas Occupied by the image of the scene’s target object (document or its
parts, car number, building, etc.).

1. Justification of Maximal Coordinate Discrepancy as Accuracy
Criterion of Image Normalization

1.1. Optical Recognition of Fixed Structured Documents

By the problem on optical recognition of a document we mean the problem on
recognizing textual content of the document on the basis of a photograph taken from
an arbitrary angle [24], i.e. in the presence of significant projective distortion.
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Document type: Credit cards
Card N2: 4276 3800 6002 0190
Valid until: 11/18

Cardholder's name: IVAN KONOVALENKO

Fig. 1. General scheme of transformations, where I,y is a photograph of a document
taken from an arbitrary angle, figea is the ideally normalized image, Ijact is the practically
normalized image and its recognition
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Fig. 2. Coordinate discrepancy. Left: Ijac; is the almost normalized image, where the
region of interest R is bounded by the frame. Right: V(r) — r,r € R, is the displacement
vector field, where coordinate discrepancy d(r) is shown in shades of gray

We say that a document is fixed structured, if text content of the document is grouped
into text fields with a known font size and position on the document. Fixed structured
documents include bank cards, driver’s license, national and foreign passports, insurance
certificates, birth certificates, ID cards, plastic passes, etc. A priori knowledge of the fixed
structure of a document significantly improves the quality of recognition. For brevity, we
refer to the problem on optical recognition of fixed structured documents as the recognition
problem (see Fig. 1). A system that solves the recognition problem is called a recognition
system.

1.2. Decomposition of Recognition System

As a rule, a recognition system is decomposed into two modules [5,7,8]. Based on the
input image linpue, the image projective normalization module calculates the estimate H of
the ideal projective normalization H and applies H to the image [jnpys in order to form the
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almost normalized image Ijact (see Fig. 1). The recognition module receives the almost
normalized image Ipact as input and returns text content of the document fields.

1.3. Uniform Probabilistic Model of Recognition Errors

Let r be coordinates of an arbitrary document character in the image ligea, then V(r)
are coordinates of the character in the image Ijpact. At the same time, for the recognition
module, the coordinates r are known and represent the expected position of the character,
and V(r) represent the unknown actual position of the character. Then the coordinate
discrepancy d(r) = ||[r—V(r)||2 (1) for the character with the coordinates r corresponds to
the distance between the expected and actual positions of the character in the normalized
image Ipact- Then the probability p of correct recognition of a character decreases with an
increase in the discrepancy d of this character. Character recognition takes place locally
in some window of the image I,ac¢ called a recognition window, whose dimensions slightly
exceed the size of the character itself. If a character does not belong to the recognition
window, then the character can not be recognized. In the simple case, the recognition
window takes place at the coordinates r of the expected character position. But in view
of the fact that the documents do not ideally correspond to the known predetermined
structure, the recognition module can specify the position of the recognition window within
certain limits. In both cases, we assume that the probability p of correct recognition of a
character remains constant up to a certain value of the discrepancy d, and then falls to
Zero:

p(d) = po[d < do, (2)

where [eo] is the Iverson bracket. Such a probabilistic model of recognition errors is called
uniform.

1.4. Statement of Problem on Constructing an Accuracy Criterion of Image
Normalization

In accordance with the modular principle, development of the projective normalization
module should be possible in the absence of the recognition module. To this end, it is
necessary to construct an accuracy criterion of normalization

L = L(I:I,H7V7d7 ]practulideal; R)?

such that the probability P of correct recognition of the entire document depends on L
monotonically decreasing. Fulfillment of this requirement leads to an improvement in the
quality of recognition with a decrease in the value L.

1.5. Construction of Accuracy Criterion of Image Normalization

Each character is recognized independently, therefore, the probability of correct
n

recognition of the entire document is P = Hpi, where p; = p(d;) is the probability
i=1
of correct recognition of the i-th character. Using uniform probabilistic model (2), we

obtain
n

P =[] pold < do] = pi[maxd; < dy).

=1
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Taking the maximal coordinate discrepancy over all characters of the document maxd;
1

as the criterion L, we have the monotonously decreasing dependence of P on L:
P = py[L < do]. This fact solves the considered problem at any values of the parameters d
and pg. Since text fields include those and only those areas of the image where recognizable
characters are located, we use max d(r) instead of max d;. In this case, the region of interest

R is the set of points of the image [;qea1 0n which the text fields are located.
Therefore, the desired accuracy criterion of normalization is the minimax criterion
equal to the maximal coordinate discrepancy on the region of interest R:

L=Lo(d;R)Y maxd(r). (3)

This criterion was used in [19] to calculate the accuracy of automatic linking of images
obtained from a geostationary satellite.

2. Calculation of Maximal Coordinate Discrepancy

In this section, we construct an analytical solution to the problem on calculating the
maximal coordinate discrepancy Lo.(d; R) = max d(r) for the only important case from
re

the point of view of the technical vision when the region of interest R consists of polygons,
i,e. R is a two-dimensional polyhedron. Following the terminology of mathematical
programming, the coordinate discrepancy d is called the objective function, and the region
of interest R is called the admissible set. We define the residual projective transformation

V in Cartesian coordinates by the homogeneous homography matrix V (vi;) € R¥*3:

V11T + 12y + V13
V91X + V22l + V23

V(r) <
V31X + V32 + V33

(4)
Denote by 1, the horizon, i.e. the line on the plane of the image [;3ea1 having the equation
V312 + 32y + v33 = 0. The denominator of the transformation V is 0 on 1, and only on
lo. (see equation (4)). For definiteness, assume that

rel,=d(r) . (5)
Now we describe the problem on calculating the maximal coordinate discrepancy (3):

V11T + V12Y + 13

x
Lo (d; R) = max U1 T V32l ot Usg , “l e R 6
( ) o + V22y + Vo3 Y (6)
V31T + U32Y + V33 2

In this problem, the objective function is neither linear fractional, nor (quasi) convex, nor
(quasi) concave (see Fig. 2). Therefore, problem (6) belongs to the general class of nonlinear
programming problems only [25]. The linear fractional programming (LFP) problem [26]

+ +
max (Ullx V12Y 013>7 [3:} cR (7>

V31T + V32l + V33 Y

is the closest to (6) known problem. Let us solve problem (6).
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2.1. Maximal Coordinate Discrepancy on Bounded Closed Region of Interest
in Affine Case

Consider a particular case of problem (6), when the transformation V is affine.

Theorem 1. Let V be an affine transformation of the Euclidean plane R?, R C R? be a
nonempty bounded closed set. Then the mazimum of the function d(r) = ||lr — V(r)||2 (1)
on the set R is achieved on the set of extreme points of the convex hull E(Conv(R)) of the

set R:
maxd = max d. (8)
R E(Conv(R))

Proof. Since the transformation V is affine, then the function d is convex on R2. Therefore,
the statement is a particular case of Theorem 4 (see Appendix A).

O

Now consider our particular case when R consists of polygons. The convex hull of a
union of polygons is a polygon. The extreme points of a polygon are its vertices {r;}? ;.
Therefore, according to (8),

maxd = max d. 9)
R {r:}?

The asymptotic complexity of computing (9) is ©(n) operations.

2.2. Failure to Achieve Maximal Coordinate Discrepancy at Extreme Points
of Convex Hull of Bounded Closed Region of Interest in Projective case

The natural question is whether Theorem 1 remains true in the case when the residual
transformation V is projective. The answer is no. In order to illustrate this fact, consider
the following counterexample (see Fig. 3). Let

2 0 0 1 9
V=I[-12 4 :>V(r):7{ },
9 0 10 —2x4+10 |-z +2y+4

and the region of interest be the rectangle R = [0,4] x [0, 1], then the extreme points of the

convex hull of R are E(Conv(R)) = { {8} , {ﬂ , [ﬂ , [(1)] } Then the maximal coordinate

discrepancy on R exceeds the maximal coordinate discrepancy on E(Conv(R)):

V17
maxd > d 2 ER)|=—>04= max d—
R 1 3 E(Conv(R))

maxd > max d,
R E(Conv(R))
which contradicts statement (8) of Theorem 1. Therefore, in the projective case, the
solution to problem (6) is not necessarily achieved on E(Conv(R)). However, the solution
to LFP problem (7) is necessarily achieved [27,28]. In this sense, problem (6) is not reduced
to LFP problem (7).
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>05r

Fig. 3. Counterexample to the hypothesis of achieving maximal coordinate discrepancy at
extreme points of the convex hull of a bounded closed admissible set in the projective case

2.3. Maximal Coordinate Discrepancy on Bounded Closed Region of Interest
in Projective Case

As shown above, Theorem 1 is not true in the case when the residual transformation
V is projective. However, for such a case, the following theorem is true.

Theorem 2. Let V be a projective transformation of the projective plane RP?, R C RP?
be a nonempty bounded closed set. Then the mazimum of the function d(r) = ||r — V(r)||2
on the set R is achieved on the boundary OR of the set R:

max d = maxd. (10)
R OR

Proof. If the projective transformation V is affine, then statement (10) follows from
Theorem 1. Consider the case when the projective transformation V is not affine. In
this case, v + v3, > 0. Introduce a family of parallel lines of the form 1(c) = {r: vz +

v32y + v33 = c}. The family covers the entire plane R?, therefore the desired maximum is

achieved on a line that belongs to the family. Let 1* o 1(¢*) be such a line, X AR be

the intersection of the line and R, then

max d = maxd. (11)
R X
Consider the properties of the function d on the line I*. If ¢* = 0, then d(r) = 400 by
definition (5). But the line 1* intersects the admissible set R, as well as its boundary OR
(since R is bounded and closed), therefore the maxima of d on R and on OR are infinity,
i.e. are equal. Next, consider the case of ¢* £ 0. Then, on the line I*, the function d is the
root of a non-negative quadratic function (in the particular case, the latter function is a

constant)
2 2
VT + vy + v Vo1 T + Vool + v
d(r) = \/(x - = ley 13) (y -2 ;fy 23) )

i.e. d is convex. On the other hand, since R is bounded and closed, then the set X =1"NR
is also bounded and closed. Then, by Theorem 4 (see Appendix A), the maximum of the
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function d on X is achieved at the set of extreme points of the convex hull E(Conv(X))
that belong to the boundary OR included in R, i.e.:

maxd = max d<maxd < maxd. (12)
X E(Conv(X)) OR R

Note that X is the set of segments along which the line 1* intersects the set R, then its

convex hull Conv(X) is the segment as well, and E(Conv(X)) is the pair of its endpoints.

Statement (10) follows from (11) and (12).

O
By analogy, we can prove that Theorem 2 is true for any finite dimension.

In the case of a bounded closed region of interest R, statement (10) of Theorem 2
allows to search for the maximal coordinate discrepancy only on the boundary dR of the
region of interest R.

2.4. Maximal Coordinate Discrepancy on Union of Polygons

Based on Theorems 1 and 2, we analytically calculate the maximal coordinate
discrepancy on a union of polygons. Let V be a projective transformation of the projective
plane RP?, R C RP? be a union of polygons. The problem is to calculate analytically the
maximal coordinate discrepancy d(r) = ||r — V(r)|l2 on R (3):

Ly(d; R) = m}%xd. (13)

Let us solve this problem. If the projective transformation V is affine, then, following
Theorem 1, the analytical solution is given by formula (9). Next, we consider the case
when the projective transformation V is not affine. Then v, +v2, > 0 and there exists the
horizon 1, on which the discrepancy d = 4o00. If the horizon 1., intersects the set R, then
1., intersects the boundary R (since R is bounded and closed), therefore L (d; R) = +oc.
Next, we consider the case when the horizon 1., does not intersect the set R. Then,
following Theorem 2, we can replace original problem (3) on finding the maximum on the
set R with the problem on finding the maximum on the boundary OR:

Lo (d; R) = maxd.
OR
But the boundary dR of the union of polygons R consists of the segments {S5;} ,, therefore

Lo (d; R) = max max d.

K3

def
Denote m; = max d, then

Loo(d; R) = maxm,. (14)

Therefore, problem (13) is reduced to the problem on finding the maximal coordinate
discrepancy d on the segment S: m = max d. Denote the endpoints of the segment S by

r; = [3:1 yl]T and ry = [xg yQ}T. Since the coordinate discrepancy is differentiable, then
the maximum of the discrepancy on the segment S is achieved either at the endpoints of
S or at the stationary points {r}k ‘jjzl of the squared discrepancy d*:

m= maX{d(rl)v d(r2)7 d(I‘T), d(r;)7 T 7d(r3)} (15>
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Find the stationary points {r}‘ 3-]:1. After parametrization of the segment S as the convex
hull of its endpoints

r(t) = [z(t) y(t)]" = (ra—r)t+15, te0,1], (16)

the squared discrepancy on the segment is written as follows:

20\ B v112(t) + v12y(t) + vi3 ? B Vo1 (1) + v22y(t) + Va3 ?
() = (x(t) va12(t) + vsay(t) + 033) + (y(t) v312(t) + vsay(t) + 1)33)

Denote
Azr = x9—x1, Ay = y2—yi,
kr = viiAz+vi2Ay, by = wvnix1+vi2y1 + vi3,
ky = wvaAw+wvelAy, b, = wvury+ vyl + v,
k. = wv31Az+v3Ay, b, = w3171+ V3291 + U33
and obtain
) = (Aat + Kyt + by 2+ Aut+ kyt +0,\
= ot + 1) — ——— e
S St h,
) . . d(dQ(t))
In order to find stationary points, we equate the derivative to zero: g 0,

(AIterl_m) (A:r—M)Jr(Ayterl—m) <Ay_m> —0.

kat+b, (kzt+b;)? kxt+b, (k2t+b,)2
Denote
he1 = ]-CZA.CI?, heo = k21 + bzAx - kxa hes = b1 — bxa
hyl = k.Ay, hyQ = k.y1 +b.Ay — kya hyS =b.y1 — bya
hot = K20z, Ty = 2k.b,Ax,  hagg = kaby — kubs + b2A,
hys = szy, hys = 2k, b, Ay, hye = k.by — kyb, + bZAy,
co = hashge + hyshye,
c1 = hgohge + hashes + hyahye + hyshys,
o = hgihge + hoohgs + hashaga + hyihye + hyahys 4+ hyshya,
cs = hgihgs + hgohga + hyihys + hyahya,
Cy = hxlhx4 + hylhy4
and obtain

co+ it + cot? + 5t + eyt = 0. (17)

Among the real roots of equation (17), it is necessary to consider only those that satisfy
the above restriction: ¢ € [0, 1]. Substitute the roots into (16) and obtain the stationary
points {r} 3-]:1. Then, we use formula (15) to find the maximal coordinate discrepancy on
the segment. This procedure should be repeated for all segments forming OR, and then
formula (14) is enough to calculate the maximal coordinate discrepancy.

Therefore, we proposed an analytical method for calculating the maximal coordinate
discrepancy Lo (d; R) in the case when the region of interest R is a union of polygons. The
asymptotic complexity of the proposed method is ©(n) operations, where n is the total
number of vertices of the polygons from R.
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Conclusion

In this paper, we introduce and justify a mathematical model of a system to recognize
a fixed structured document from a photograph taken from an arbitrary angle. Within the
framework of the introduced mathematical model, we prove that the accuracy criterion
for normalization of photographs, which is equal to the maximal coordinate discrepancy
in text fields of the document, monotonically depends on the probability of further correct
recognition of the entire document. Also, we show that the problem on calculating the
maximal coordinate discrepancy is not reduced to the nearest known one, i.e. LFP problem.
In addition, we prove the theorem that reduces the problem on maximization of the
coordinate discrepancy on a bounded closed set to maximization of the discrepancy on
the boundary of the set only. Finally, we obtain an analytical solution to the problem on
calculating the maximal coordinate discrepancy on the union of polygons. The results
can be used both to construct image normalization methods and to develop image
normalization accuracy criteria.

Appendix A: On Maximum of Quasiconvex Function on Bounded
Closed Set

Theorem 3. Let X C R"™ be an arbitrary nonempty set, f be a quasiconvexr function
defined on Conv(X) as well:

dom f O Conv(X). (18)
Then
sup f = sup f. (19)
X Conv(X)

Proof. Denote the supremum of f on X by
s < sup f, (20)
X
then

flreX) <s. (21)

Taking into account (18), consider all the points of Conv(X), the value of f at which does
not exceed the supremum of f on X:

def

Xs = {r € Conv(X): f(r) < s}, (22)

then
X C Conv(X) (23)

and
f(re X;) <s. (24)

It follows from X C Conv(X) and (21) that X satisfies all the restrictions of the definition
of X, (22), therefore,
X C X.. (25)
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But X, is convex, since f is quasiconvex. Therefore, X is a convex set containing X. Then
Conv(X) C X as the smallest convex set containing X. Hence, taking into account (23),
we have

X = Conv(X). (26)
It follows from (20) and (25) that sup f > s, therefore, taking into account (24), we obtain
Xs
sup f = s. (27)
Xs

Statement (19) follows from (20), (26) and (27).
O
Theorem 3 can be used in both directions: to replace X with (as a rule) a more simple
set Conv(X) and to replace Conv(X) with (as a rule) the significantly smaller set X.
Next, define an extreme point of a convex set C' in a real vector space as a point that
is not the middle of a segment in C'.

Theorem 4. Let X C R" be a non-empty bounded closed set, f be a quasiconvex function
defined on Conv(X) as well:
dom f 2O Conv(X).

Then

supf = sup f, (28)
X E(Conv (X))

where E(C') is the set of extreme points of the convez set C.

Proof. Denote

C ¥ Conv(X). (29)

Since the set X is bounded and closed, then the set C' is bounded, closed and convex
(Caratheodory’s theorem [29]). Following Corollary 18.5.1 of the monograph [30], the set
(' is the convex hull of its extreme points:

C = Conv(E((C)). (30)
Substitute (29) into (30) and obtain
Conv(X) = Conv(E(Conv(X))) =
sup f=  sup [ (31)
Conv(X) Conv(E(Conv(X)))

Applying Theorem 3 to both parts of (31), we obtain statement (28).

(I

Theorem 4 is close to statements given in the section “Maxima of convex functions” of

the monograph [30], but, unlike these statements, does not require the convexity of f and
X. In addition, Theorem 4 does not require the connection of the set X.
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MAKCHUMAJIbBHA I HEBSIBKA KOOPINHAT KAK KPUTEPUN
TOYHOCTU ITPOEKTUBHO HOPMAJIN3AIINUN N30BPAYKEHUS
TP OIITUNYECKOM PACITOSBHABAHNN JTOKYMEHTOB

H.A. Konosanenxo'?, B.B. Koxawn'?, /I.II. Huxoaaes'?

MucruryT npobiem nepenaqn undopmaimn um. A.A. Xapkesuua PAH, r. Mocksa,
Poccuiickas @enepariust

2000 Cwmapt Dmmxunc Cepsuc, r. Mocksa, Poccniickaa ®@enepars

OO1menpuHaTO IPUMEHEHHEe IPOEKTUBHON HOpMaJjm3anuyu (YacTHBIA CIydaii OpTOKOp-
PEKIUK ¥ KOPPEKIMU NEPCIEKTUBbI) K doTorpadusimM JOKYMEHTOB MU UX HOCJIE/YIONIEro
OIITUYECKOI'O PaCIo3HaBaHus. [Ipy 9TOM HETOYHOCTH HOPMAJIU3AIMKA MOTYT IPUBOIUTH K
omubKaM pacno3HaBaHus. Ha cerofHsIHnil JeHb B JINTEPATyPe IPEJJIOKEH PsiJi KPUTEPHUEB
TOYHOCTU HOPMAJIU3AIUH, OJIHAKO UX COOTBETCTBUE KAUECTBY PACIIO3HABAHUSI HE UCCIIETyeT-
csa. B mamnoit pabote mts caydas JOKyMeHTa (PUKCHPOBAHHON CTPYKTYPhI 000CHOBBIBAETCS
paBHOMEpPHAsI BEPOSITHOCTHASI MOJEJIb ONUOOK PAaCIO3HABAHUSI, B COOTBETCTBUHU C KOTOPOI
BEPOSITHOCTH BEPHOI'O PACIIO3HABAHUSI CUMBOJIA CKAYKOM IIaJ1aeT JI0 HyJIsl C POCTOM HEBSI3KH
KOOP/IMHAT ITOrO CUMBOJIA. JlJIst 9T0# MOe/n TOKA3aHO, 9TO KPUTEPHUIl TOYHOCTH HOPMa~
JIA3aIuu U300parkeHusi, PABHBIA MAKCUMAJILHON 110 TEKCTOBBIM MOJISIM JIOKYMEHTa HEBSI3KE
KOOD/IMHAT, MOHOTOHHO CBSI3aH C BEPOSITHOCTHIO BEPHOI'O PACIIO3HABAHUST BCETO JIOKYMEH-
ta. [lokazaHo, 9TO 3aja4ya BBIYUC/IEHUS MaKCHUMAJbHON HEBSI3KM KOODIWHAT HE CBOIUTCS
K OjmKaiinieil n3BeCTHOM, T.e. 3ajade IPOOHO-JIMHEHOrO IporpaMMupoBanusi. Hakorerr,
BIIEPBBIE MIOJIyYeHO aHAJUTUIECKOE PENIeHUe 3aJ[a9/ BhIYUC/IEHUsST MAKCAMAJbHON HEBSI3KH
KOOD/IMHAT Ha 00beINHEHUH MHOTOYTOJHLHUKOB.

Karouesvie cao6a: opmokopperyus; Koppexyus NePCnexmuesl; npoeKmuehas HopMait-
30U U300PANCERUT; ONMUNECKOE PACTOZHABAHUE CUMBON0E; KPUMEPUU MOYHOCTU; HEBA3-

K@ KOOPOUHAM; HEAUHETHOE NPOZPAMMUPOSAHUE.
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