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Volterra integral equations find their application in many areas, including mathematical
physics, control theory, mechanics, electrical engineering, and in various industries. In
particular, dynamic Volterra models with discontinuous kernels are effectively used in power
engineering to determine the operating modes of energy storage devices, as well as to solve
the problem of load balancing. This article proposes the numerical scheme for solution
of the fractional order linear Volterra integral equations of the first kind with piecewise
continuous kernels. The developed approach is based on a polynomial collocation method
and effectively approximate such a weakly singular integrals. The efficiency of proposed
numerical scheme is illustrated by two examples.

Keywords: Volterra integral equations; numerical method; convergence; discontinuous
kernel; singularity; fractional integral.

Introduction

Volterra integral equations (VIEs) [1] were introduced by Vito Volterra and then
studied by Traian Lalescu in his 1908 thesis. In weakly regular case, VIEs were introduced
in [2], and the theory of such equations is generalized to the case of systems of equations
and to abstract operator equations in the monograph [3]|. Integral equations are essential
tools in various fields including power and electrical engineering, mathematical physics,
control theory and mechanics.

Fractional integration and fractional differentiation are generalisations of notions of
integer-order integration and differentiation, and include n-th derivatives and n-folded
integrals (n denotes an integer number) as particular cases. The first mention of
derivatives of non-integer order is presented in the correspondence between G. Leibniz and
J. Bernoulli. In a letter written by G. Leibniz to G. Lopital, there is also an interesting
mention about the paradox and possible useful practical application of differentials of

1
order 3 In recent years, interest in fractional calculus grows [4-6].

Fractional derivatives have numerous applications; they are in the core of various
mathematical models for viscoelastic bodies, in chemical physics, the theory of gravity,
viscoplasticity, etc. [6,7]. Fractional derivatives have practical applications in modelling
the behavior of viscoplastic materials. In particular, the equations of state in the theory
of viscoplasticity contain fractional derivatives and can be reduced to weakly singular
Volterra integral equations of the second kind [8,9].
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This article discusses weakly regular Volterra equations of the first kind

/K(t,s)x(s)ds:f(t), 0<s<t<T, f(0)=0, (1)

where the kernel is defined as follows:

Ki(t,s), t,semy,  my={t,s | a1(t) <s<at)},
K(t,s) = e e (2)
K,(t,s), t,s €m,, ao(t)=0, a,(t)=t, i=1,n,

a;(t), f(t) € C[o 7» Ki(t,s) have continuous derivatives with respect to ¢ for € m;,
K,(t,t) # 0, a;(0) = 0, 0 < ay(t) < aalt) < ... < ap_1(t) < t, aa(t),...,an_1(t)
grow in a small neighborhood 0 <t <7, 0 < af(0) < ... <al,_,(0) < 1.

The works [2,10] are the first to study such equations and to outline the non-unigness
of the solution. The paper [11] derives the existence of a continuous solution depending
on free parameters as well as sufficient conditions for the existence of a unique continuous
solution to the system of VIE of the first kind with discontinuous kernels. The class of
Volterra operator equations of the first kind with piecewise continuous kernels is studied
in [12]. Various numerical methods for linear and nonlinear VIE with piecewise continuous
kernels and their systems with applications for power systems operation are proposed
in [13-15|. In [16], the Volterra model is employed for a load leveling problem in modelling
the hybrid AC/DC power systems with renewable energy sources and storage system.

For systematic studies of VIE of the first kind with piecewise continuous kernels, see
the book [3] and the part 1 in [17]. For numerical solution of Volterra integral equation of
Abel type, see [18|. The numerical solution of the Volterra fractional integral equations of
the second kind using the Simpson 3/8 rule method is proposed in [4].

In the case of a fractional order of integration for these equations, consider the left-
sided Riemann-Liouville fractional integral of the order g > 0

By L / f(s) .
Itf(t)‘rw)/(t_s)ﬂd' ®)

0

For equation (1) in the case of fractional order of integration (3), we solve the integral
equation

1 [ K(ts) - -
F(ﬁ)o/(t_s)ﬂx(s)ds—f(t), 0<s<t<T, f(0)=0, (4)

with piecewise continuous kernel (2).

1. Polynomial Collocation Method

Let us write equation (4) in the following expanded form:

Z / Kt’_g’ﬁ(%:m), te[0,T], 0< B <1, (5)

i=1
a;—1(t)
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Apply the following representation (as power series segment) of the solution to
equation (5):

Xn(t) = a;t! (6)
=0
with the desired a;, 7 =0,1,...,m,. Let us substitute (6) into (5), then we get

1 - Ki(t,s) [ & A
I'(B) 4 / (t —s)° (Z j )d = f(t).

J=0

Let us change the order of integration and summation
1 n m ai(t) % (t ) j
i\l; §)S
— ; ———ds = f(t 7
r(g)zzay / t—s)PF f(t) (7)
=1 7=0 @i (?)
and transform the last equality as follows:
i(t,5)s
- . N ds = f(¢).
oy | om0

0 1
Ozi,l(t)

<

We require the fulfillment of the last equality at the points of a uniform grid
kT
Cm+1

Therefore, we arrive at the following system of equations for the unknown coefficients
aj, j:O,l,...,m:

th k=12 ...m+1.

Z”ykjaj =F, k=1,2,...,m+1, (8)
j=0
where

] n a;(tr) % (t ) i

i\lk,S)S
YVij = e / SRS s, Fe = f(t). 9
=T & Ty () ®)

a;—1(tg

System of linear algebraic equations (8) is solved for unknown expansion coefficients (6)
by the Jordan-Gauss method, and in order to calculate the elements of the matrix of this
system, below we construct special quadrature formulas that take into account the power
singularity of the integrands.

1.1. Approximation of Weakly Singular Integrals

In the previous section, when constructing the matrix of system of linear algebraic
equations, in order to determine the coefficients of the approximating polynomial, it is
necessary to calculate the values of the functions

Oli(tk)

Ki(ty, s)s?
. . 9 . .
I(i k,j5) = 7[3(15, i=1n, k=1,m+1, j=0,m, (10)
(tk — s)
a;—1(ty)
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containing either a convergent improper integral (for i = n), or significant in magnitude
integrands (for ¢ < n). In this section, we propose a method to calculate integrals (10).
For each triple ¢, 7, k, an internal mesh of nodes is constructed as follows:

a;(ty) — i1 (tr)
h

l
T :ozi_l(tk)%—;(ozi(tk) —a;q1(ty)), 1=0,1,...;r, r= [ +1, (11)

were [t] stands for integer part of a real number ¢, and h is a sufficiently small parameter,
which we conventionally call the grid step. Then we approximate integral (10) as follows:

Ktk,
I(i k,j5) = Z tk—s e

1 4 T—1+T7 T—1+T7 7 1— -
z—EK-t tr— 1) P = (ty — 7)) . 12

Therefore, for relatively small values T', we propose a sufficiently effective method for
solving equations of the form (5), the error of which can be estimated by the inequality

o L= (m+1) (¢ 1

() = X (@)l oo,y <
for z(t) € C™*10,T).

With an increase in the length of the planning interval [0, 7’|, to maintain the order of
accuracy, it is necessary to increase the degrees of the approximating polynomials, which
leads to significant computational errors. In order to overcome this restriction, the method
can be generalized using a polynomial spline approximation of the solution constructed in
each section in a similar way.

It is known that exact solutions to weakly singular Volterra integral equations can
have unbounded derivatives as ¢ — 0 [19]. In this case, the exact solutions belong to the
class of functions C™#(0, T] defined as follows.

Definition 11. Let Q@ = (0,7], 0 < < 1. We say that a function x(t) belongs to

C™B(0,T), if for t € (0,T] the function x(t) has continuous derivatives up to the order r
estimated as follows:

|2 * ()]\tk 5 forallt € (0, T),k=0,1,... 7.

In this case, an approximate solution to equation (5) can be found as
m
t) = ag + Z ajt]*ﬁ. (14)
j=1

The method to determine coefficients expansion (14) is employed below in the similar way.
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Table 1

Numerical results for Example 1

Errors
h = 1072 h=10"° h=10""* h=107"°

m

3 18,3730 -10~* | 1,0826 -10~2 | 1,1168 - 10~ | 1,0538 1073
4 11,1624 -1073 | 2,0991 -10~* | 1,7066 -10~* | 1,6319 10~*
5 12,0042 -1073 | 5,3862 - 107 | 6,9064 - 107% | 5,3063 10~
6 | 1,8925 -1073 | 5,3393 - 107> | 1,1764 -107¢ | 5,0464 1077
7 | 1,5110 - 1073 | 4,6339 - 107° 4,3806 1078
8 | 1,8389 -107*

9 |1,8421 -1073

10 | 7,6494 - 10~

2. Numerical Results

In order to demonstrate how the numerical method works, we show two examples.

Example 1. As the first example, we solve the following equation:

t/2 2t/3 ¢
1 €(t+s)x(5) tsz(s) (s + 2)3x(s) B
L'(8) 0/ (—sp & +t//2 s +2t//3 Ty |7 f(®),

where the right hand side of the equation is chosen such that the exact solution is Z(t) =
sin(¢). Calculations are performed for t € [0, 7], the order of the fractional integration is
8 = 3. Table 1 shows the errors ¢ = Jnax |Z(t;) — X (t;)| for different values of m and h.

Example 2. As the second example, we solve the equation

2t

SIIl7\/75 + sz( Smi(t + s)z(s) / (t* + s+ 3)x(s)
/ et [ e [ S s s,

2

where, as well as in the previous example, the right hand side of the equation is chosen

such that the exact solution is Z(t) = ln%ﬂtz, t€[0,7T) and g = 5

Table 2 shows the errors ¢ = Jnax |Z(t;) — X,n(t;)| for different values of m and h.

The examples show the following interesting feature: as the step decreases from h =
10~* to h = 107?, the error is significantly decreased at Example 1, and remains at the same
level at Example 2. Note that the error in the approximate solution to the second model
problem is somewhat worse than for the first one. This is due to less smooth components
K;(t,s) and a more complex structure of the exact solution. In the future, we intend to
develop more accurate quadratures for approximation integrals arising when calculating
the coefficients of the system.
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Table 2

Numerical results for Example 2

Errors

m h = 1072 h =103 h=10"* h = 10°

3 16,2792 -1072 | 6,3200 - 1073 | 6,3211 - 1072 | 6,3212 1073
4 |1,6741 - 1073 1,7364 -1073 1,7370 -1073 1,7371 1073
5 | 4,9248 -1074 5,3815 .10~ 95,3845 .10~ 5,3846 1074
6 | 3,1440 -1074 1,9342 .10~ 1,9291 .10~ 1,9292 1074
7 13,1069 -107* 7,9240 -107° | 8,0305 -107° | 8,0298 103
8 3,8965 -107° | 3,8303 -107° | 3,8296 10~°
9 2,0569 -107° 2,0370 -107° 2,0406 107°
10 1,0447 - 1075 1,1771 -107° 1,1840 1075
11 7,4383 -1076 17,3277 1076
12 4,5928 -107% | 4,7671 10~
13 3,2945 -107° | 3,2260 10
14 2,7023 -107°¢ | 2,2571 1076
15 1,2863 -1076 1,6224 1076

Conclusion

In this article, we present the numerical collocation method that can be used to
solve linear Volterra fractional order integral equations of the first kind with piecewise
continuous kernel. The proposed quadrature formula effectively employ the restriction
of the considered weakly regular equations with fractional order integrals and piecewise
continuous kernels.
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Warerpasibabie ypaBHeHusi BoJibTeppa HaXO[AT CBOe IPUMEHEHHEe BO MHOIUX 00Jia-
CTsIX, BKJIFOYAsi MATEMATHYIECKYIO (DU3UKY, TEOPHUIO YIIPABJIEHUs, MEXAHUKY, JIEKTPOTEX-
HUKY, ¥ B PA3JIUYHBIX OTPACISIX IPOMBIIIJIEHHOCTH. B YacTHOCTH, JMHAMUYECKUE MOJIEJIH
BousbTeppa ¢ paspoiBabiME sapaMmu 3(hDOEKTUBHO HCIOIL3YIOTCS B SHEPIeTUKE IJIsi OIpe-
JleJIeHUsT PEXKUMOB pabOTHI HAKOIUTEJIEN SHEPIUH, & TAKXKe JIJIs PElIeHus 331a9i BbIPaB-
HUBaHUs HArpy3kKu. B craTbe mpejiaraercs YUCJACHHBI METOJ PEIeHUs JIMHEHHBIX WH-
TerpaJjbHbIX ypaBHeHHuil Bojbreppa mepBoro pojia JpoOHOTO MOPsIAKa WHTEIDUPOBAHUS C
KyCOYHO-HEIIPEPBIBHBIMU spaMu. Pa3paboTaHHbIi [I0IX0/] OCHOBAH HA METOJIe IIOJIAHOMU-
aJIbHOM KOoJUTOKAIuu 1 3P HEKTUBHO ANIPOKCUMUAPYET TaKue cjiabo CUHTYJISPHbIE WHTEerpa-
Jibl. DDOEKTUBHOCTD MPEJJIOKEHHOTO YUCICHHOTO METO/a WILTIOCTPUPYETCS HA JIBYX MPU-
Mepax.
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