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One of the approaches to solution of the problem on restoring a distorted input signal
by the recorded output data of the sensor is the problem on optimal dynamic measurement,
i.e. the Shestakov—Sviridyuk model. This model is the basis of the theory of optimal dynamic
measurements and consists of the problem on minimizing the difference between the values
of a virtual observation obtained using a computational model and experimental data,
which are usually distorted by some noise. We consider the Shestakov—Sviridyuk model of
optimal dynamic measurement in the presence of various types of noises. In the article, the
main attention is paid to the preliminary stage of the study of the problem on optimal
dynamic measurement. Namely, we consider the Pyt’ev—Chulichkov method of constructing
observation data, i.e. transformation of the experimental data to make them free from
noise in the form of “white noise” understood as the Nelson—Gliklikh derivative of the
multidimensional Wiener process. In order to use this method, a priori information about
the properties of the functions describing the observation is used.

Keywords: optimal dynamic measurement; Leontief type system; multidimensional
Wiener process; Nelson—Gliklikh derivative; algorithm to solve the problem.

Introduction

One of the main problems of the theory of dynamic measurements is to find the
influence on a measuring system by a signal that is recorded at the output of the system.
The classical methods to solve this problem are methods based on the theory of inverse
(ill-posed) problems (see the review [1|). Based on methods of the automatic control
theory, A.L. Shestakov and his students proposed and substantiated technical hypotheses
for solution of the problem on recovering a dynamically distorted signal [2|. Further
studies showed that one of the ways to improve the accuracy of the results obtained when
solving this problem is to study the mathematical model of the problem on recovering a
dynamically distorted signal. To this end, A.L. Shestakov and G.A. Sviridyuk proposed
to use methods of the theory of optimal control [3] by solutions of the system obtained
as a result of using the theory of automatic control. The optimal dynamic measurement
problem [4] is the obtained optimal control problem for a Leontief type system. Using the
methods of numerical solutions for Leontief type systems [5], the constructed mathematical
model was reduced “to the number” [6]. The reviews |7, 8] are devoted to description of
this mathematical model. The resulting theory is called the theory of optimal dynamic
measurements. In the theory of optimal dynamic measurements, noises of various types and
natures can be taken into account. Therefore, to date, problems on optimal measurement
were investigated in the presence of inertia of the measurement transducer (MT) [6],
resonances in the MT circuits [9], as well as the MT degradation [10] understood as a
decrease in the sensitivity of the MT when operation.

The theory of optimal dynamic measurements is based on the Shestakov-Sviridyuk
model of description of the MT. This model consists of two parts. The first part of the
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Shestakov—Sviridyuk model is described using the nonstationary Leontief type system

Li(t) = a(t)Mxz(t) + Du(t), ker L # {0}, (1)

y(t) = b(t)N(t) + Fu(t), (2)

where L, M, D, N, F are square matrices of the order n, z(t) = col(x1(t), z2(t), ..., z,(t)),
y(t) = col(yi(t),ya(t),...,yn(t)) and wu(t) = col(ui(t),us(t),...,u,(t)) are vector

functions, a(t) and b(t) are functions. Here the matrices L, M, D, N and F' characterize
construction of the MT, the vector function x = xz(t) characterizes a state of the MT,
the functions a = a(t) and b = b(t) describe degradation of the MT during long-
term operation (for example, when operating in near-Earth space), the vector function
u = u(t) corresponds to the input signal (measurement), and the vector function y = y(t)
corresponds to the output signal (observation). In order to obtain the mathematical model
of the MT, system (1), (2) is endowed with the initial Showalter—Sidorov condition [11]

P(x(0) — x) =0, (3)

where P is the orthogonal projection onto the image of the resolving family of matrices of
homogeneous equation (1) [12]. The second part of the Shestakov—-Sviridyuk model is the
optimization problem

J(v) = min J(u), (4)

ucily

which uses a functional of the form

J(u) = —5/Hy ()|t + (1 — <) /C’x ()t (5)

0

to minimize the difference between the model observation y and the observation 3 obtained
as a result of processing the data of a natural experiment. Here || - || and (-,-) are the
Euclidean norm and scalar product in R”. Using a priori information, a convex and closed
subset sy C 4 called a set of admissible measurements is constructed. By minimizing
the first term of functional (5) on the set iy, we achieve the minimization of influence
of the MT inertia on the measurement. And by minimizing the second term, we reduce
influence of resonances in the MT circuits. (Note that a square symmetric matrix C' of the
order n characterizes the mutual influence of resonances in the MT circuits). The constant
e € (0,1) is chosen such that to take into account the preferences of the researcher. Finally,
y(t) is an observation obtained as a result of a computational or natural experiment.
Therefore, the problem on finding the optimal measurement v(t) is to find minimum (4) of
functional (5) for the vector functions x and y satisfying problem (1) — (3) for some initial
data xp € R"™. The Shestakov—Sviridyuk model can be represented by problem (1) — (5),
which we also call the optimal dynamic measurement problem, and its solution allows to
restore the signal v € 4,4 corresponding to the observations y.

In order to study Shestakov—Sviridyuk model (1) — (5), it is necessary to pay special
attention to the methods of processing experimental data, with the help of which the
deterministic function 7 is constructed. At the same time, when constructing the values of
y, various mathematical methods can be used to filter the data of a natural experiment,
since the data are often distorted by random noise. On the one hand, the filtering methods
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for finding the useful part of the signal may not always be applicable, and on the other
hand, such methods may give results that are not applicable for further investigation of
the considered problem. The need to find the useful part of the signal arises in studies
of various kinds (see, for example, [2, 13]). As regards the theory of optimal dynamic
measurements, in fact, this problem is a preliminary stage of the solution. On the basis
of a priori information on the properties of functions describing the useful part of the
observation, the Pyt’ev—Chulichkov method allows to construct the values y perturbed
by “white noise”, which is understood as the Nelson-Gliklikh derivative [14-16] of the
n-dimensional Brownian motion.

The paper [17] describes the Pyt’ev—Chulichkov method in the one-dimensional case
for optimal dynamic measurement problem. In this paper, our main purpose is to describe
this method in the multidimensional case.

1. Optimal Measurement Taking into Account Inertia, Resonances
and Degradation of Measurement Transducer

Let L and M be square matrices of the order n, f(t) = col(fi(t), fo(t), ..., fu(t)) be
some vector function. Linear inhomogeneous equations of the form

Li(t) = Mx(t) + f(1), det L =0

are called Leontief type equations, paying tribute to V. Leontief [18], who was the first
to study such equations. Note that Leontief type equations are also called “differential-
algebraic equations” [19], “algebraic-differential systems” [20], “descriptor systems” [21],
etc. As described above, the system of Leontief type equations of the form

Li(t) = a(t)Mxz(t) + Du(t) (6)

describes a part of the mathematical model of the MT, where D, N, F' are square matrices
of the order n, x(t) = col(z1(t),z2(t),...,x,(t)), y(t) = col(yi(t),y2(t),...,yn(t)) and
u(t) = col(uy(t), us(t), ..., u,(t)) are vector functions, a(t) and b(t) are functions.

The matrix M is said to be regular with respect to the matriz L (in short, L-regular)
if there exists a number a € C such that det(aL — M) # 0. It is clear that a number
a € C such that det(aL — M) # 0 exists if det L # 0. However, a careful analysis of real
MT [22,23] shows that the case det L = 0 takes place quite often. A matrix M is called
(L, p)-regular for p equal to the order of the pole in oo for the function (uL — M)~'. If
infinity is a removable singular point of the L-resolvent of the matrix M, then p = 0. For
square matrices, the parameter p cannot be more than the dimension of the space n.

Let the matrix M be (L, p)-regular, p € {0,1,...,n — 1}. Set the initial Showalter—
Sidorov condition |11]

[Ry (M) (a(t) — w0) = 0, (7)

where RY(M) = (uL — M)~ L is the right L-resolvent of the matriz M, while zo € R is
some vector. We fix the number 7 € R, and consider the space of measurements

U= {u € Ly((0,7);R") : u® € Ly((0,7);R")},

the space of observations ) = Lo((0,7); R™) and the space of states X = 9).
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Theorem 1. (8] Let the matriz M be (L,p)-regular, p € {0,1,...,n} and det M # 0.
Then for any xy € R™, a € C([0,7];Ry) N CP((0,7);R,), b € C([0,7];Ry) and u € 4,
there ezists a unique solution y € ) to problem (1) — (3) given by (2) for unique solution

of (6), (7) in the form

q=0

t -1 K

1
Here X (t,s) = klim L— E/a(r)dr]\/[ L | is a degenerate flow [12], i.e.
—00
0

X(t,r)X(r,s) = X(t,s) for all t, r, s € R such that ¢t > r > s, and X(¢,t) # L, for
all t € R;
lim (kL (kL — M)™H)",

- k—o00

1 —1
L' = lim (L— EM) Q, Q

k—o00

Ly=L(,—-P), P= klim (k (kL — ]\/[)71 L)k, H =M YT, —Q)Lo.
—00
Remark 1. In Theorem 1, the condition det M # 0 does not reduce the generality of
the problem under consideration. Indeed, taking into account the (L, p)-regularity of the
matrix M, the replacement z = e*r leads to the equation L = (M — AL)r + Bu, which

is of the same form as the first equation of system (6), but with det(M — AL) # 0.

Let us formulate a theorem on the existence of a solution to optimal measurement

problem (1) — (5).

Theorem 2. (8] Let the matriz M be (L, p)-reqular (p € {0,1,...,n}), det M # 0. Then
for any zo € R", y € 9, a € C([0,7];RL) NCP((0,7);R;) and b € C([0,7];Ry), there
exists a unique measurement v € gy for which (5) is satisfied.

2. Multidimensional “White Noise”

Let Q = (Q,A,P) be a complete probability space, R be the set of real numbers
endowed with Borel g-algebra. A random wvariable is a measurable mapping £ : 2 — R.
Random variables with zero expectation and finite variance form a Hilbert space Ly with
the scalar product (£1,&) = E&&. Denote random variables £ € Ly that have normal
(Gaussian) distribution by & ~ N(0,0?), where E¢ = 0 and D¢ = o2,

Let 3 C R be some interval. The mapping 1 : I xQ — R is called an (one-dimensional)
stochastic process. For each fixed ¢ € J, the value of the stochastic process n = n(t,-) is
a random variable, i.e. n(t,-) € Ly, which is called a section of the stochastic process,
and the value of the stochastic process n = n(-,w) is said to be a (sample) trajectory for
each fixed w € Q. A stochastic process 7 is called continuous, if a.s. (almost sure) all its
trajectories are continuous (that is, for a.a. (almost all) w € €, the trajectories n(-,w) are
continuous). By a continuous Gaussian stochastic process we mean a continuous stochastic
process whose (independent) sections are Gaussian.

The most important example of a continuous Gaussian stochastic process is the (one-
dimensional) Wiener process f = [3(t), which simulates Brownian motion on a straight
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line in the Einstein-Smoluchowski theory [24] and is represented by the formula
B(t) = Y Gusin Z(2k + 1), (8)

where & ~ N(0,[5(2k + 1)]7) are independent normally distributed variables. The
sections of the stochastic process [ are normally distributed random variables with
ES(t)=0 and DB(t) = ot for some o > 0. The stochastic process 3 represented by
(8) is called one-dimensional Brownian motion.

We fix an arbitrary stochastic process n = n(t) and the value of the parameter ¢ €
J(= (e,7) C R), and denote by N}’ the o-algebra generated by the random variable 7(t).
Denote by E] = E(:|N,") the conditional expectation with respect to the o-algebra N

Let n be a continuous stochastic process, then by the Nelson—Gliklikh derivative 73 of
the stochastic process n at the point t € (£,7) we mean a random variable

o I n(t+At, ) —=n(t,-) n(t,-)—n(t—At,-)
D= = n n
n(t.) 2 (A£%+Et( A\t +A£I—I>I(l)+E A\t ’

if these limits exist. The stochastic process 7 is called differentiable in the sense of Nelson—
Gliklikh on (g, 7), if there exists a Nelson—Gliklikh derivative at each point ¢ € (g, 7).
B(t)

Theorem 3. [15] Let 8 be a Wiener process (8), then ,g’(t) = vVt € R;.

The sectlons of the stochastic process ﬁ are normally distributed Wlth the parameters
(0,2), iec. ,6’( ) ~ N(0, 4t) Therefore, the Nelson—Gliklikh derlvatlve ,6’ of the Brownian

"4y
motion [ from (8) is called an one-dimensional “white noise”.
Let n € N. Consider n independent random processes {n;(t),n2(t),...,n,(t)} and

define an n-dimensional random process (briefly, n-random process) by the formula

ot) = Z n;(t)e;, where e; are unit vectors in the space R", (j = 1,n). It is obvious that
j=1

a.s. all its trajectories are continuous and differentiable in the sense of Nelson—Gliklikh,

if n; (j = 1,n) have these properties. By analogy with the one-dimensional case, by an

n-dimensional (multidimensional) “white noise” we mean a stochastic process of the form

o

= Z B; (t)e;, where f3;(t) is an one-dimensional “white noise” (j = 1,n).

3. Pyt’ev—Chulichkov Method for Constructing Useful Part
of Observation in the Presence of Multidimensional
“White Noise”

Suppose that, as a result of an experiment, we simultaneously observe several variables
characterizing the observed process at equal intervals at time instants {t; : j € T},
Z=1{0,1,...,N}, i.e. the observation is the n-dimensional vector {n'(t),n*(t), ..., n"(t)}.
As a result of such observations, we obtain n'(¢;) (i = I,n, j = 0, N). In addition, we
know a priori information about the useful part of each observed variable n‘(t), namely,
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about the extremum and the nature of convexity of the useful part. However, due to the
influence of random noise, the observed variables {n'(t;)}}_y (1 = 1,n) do not have these

properties. Assume that the observed variables can be represented as

n(t) = G(t)+ Walt),

where y : [to;tn] — R™ is the vector function of the useful part of the observation, and

I/(I)/n (t) is a part that involves noises at measurements, i.e. a multidimensional “white noise”.

Since model of the MT (1), (2) is linear, it is clear that construction of observation
values from the data distorted by the multidimensional “white noise” can be carried out for
each coordinate separately. That is, each coordinate of the observation can be represented
in the form

n'(t) =wt)+ Bi(t)  (i=T1n).
Here y;(t) is the useful part corresponding to the i-th coordinate of the observation, and

Bi (t) is the part that involves noises at the corresponding coordinate, i.e. “white noise”,
the sections of which have the distribution given by N (0, Zt)

Let us briefly describe the statistical criterion for determining the position of the
extremum point under the additional assumption of the uniqueness of the extremum point
and the upward convexity of the useful part of the observation. To this end, we denote by
Vi the class of upward convex functions with the unique maximum at the point ¢; on the
uniform grid {t; : j€Z}, 7 ={0,1,...,N}.

Fix the observation coordinate ¢« € N : 1 < i < n. Suppose that the useful part of the
signal g;(t) has a maximum at the point ky € Z of the uniform grid, i.e. y; € Vj,. Our goal
is to estimate the parameter ko using the registered values {n'(t;)}}_, i.e., with a given

probability v, to estimate the parameter ky by the observation data:

W) = G+ B (), T € Vigr Bi(t) ~ N(0,2). (9)

Based on the results obtained at [25], in order to estimate the parameter kg € Z for
the i-th coordinate of the observation, we use statistics of the form

Z(??( IV = Pe(n' (t)v/T;))?

Tkz(l) = ) (1())

S = PUH)E)?

where 77 = w5 >~ 7'(t;)/%;, and Pk.(n’(t)\/f) is the projection of 7°(t)y/t onto the set Vj,
j=0

the existence of which is shown in [25] and the construction of which is described in [17].
The value of the constructed statistics is used to find the value of the parameter k at which
the useful part of the signal n'(t)\/t is closest in the form to Py(n'(t)v/t).

Let us consider the problem on constructing the values of one coordinate of
observations on a uniform grid {t;}*_; as the problem on the best approximation of 7;(t)v/t
by elements of the set Vj, that is, search for the function Py(n'(t)y/t) € V, such that
| P.(0'(t)Vt) — (i ()VE)||> = fig‘f/ |.fi — n'(t)V/t]|?. The work [17] presents the algorithm

i k

to construct the values of the useful part of one observation coordinate Py (n'(t)v/t).
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4. Algorithm to Construct Useful Part of Observation

Fig. 1 shows the algorithm to construct the useful part of one observation coordinate
distorted by “white noise” under the additional assumption of the uniqueness of its
extremum point and convexity upward.

Input ;
of observation data
Find the maximum point
Cycle v
by maximum point number

Transform
obtained data

Construct projections

A4

‘I' Qutput
Calculate statistics of obtained data

v

Calculate reliability °
v

Cycle

Fig. 1. Algorithm of the Pyt’ev—Chulichkov method

Let us describe the steps of this algorithm. As input data, we take the length of the
time segment 7, the number NV of discretization intervals, the values {ni(tj)}év:o distorted
by “white noise” and the confidence probability v of finding the maximum point.

Let k € Z be a number of the uniform grid point in which the useful part of the signal
y;(t) has a maximum, i.e. y; € V. We set k = 1.

Step 1. Construct Py(n'(t)v/t), i.e. a projection of n'(t)\/t onto the set Vj, by the
algorithm described in [17].

Step 2. Calculate statistics (10).

Step 3. Calculate the reliability a(k) = / PN(0,0) (T)d.

Tk (2) > 7 (1)
Since the value of o does not depend on o > 0, then the value can be found
by the Monte-Carlo method by playing realizations of N + 1 normally distributed
random variables z ~ N (0, 1) and counting the frequency of realizations for which

() > 71 (7).

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 87
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2020. T. 13, Ne 4. C. 81-93




M.A. Sagadeeva, E.V. Bychkov, O.N. Tsyplenkova

Step 4. Increase k and if k£ > N, then go to Step 5, otherwise go to Step 1.

Step 5. Determine all values of k for which a(k) > v and consider the required kg to be
the average value among these values of k.

Step 6. Calculate the values of the useful part of the observation y;(t;). Note that the
previous steps allow to use the coordinates of the experiment data n'(t)y/t in order
to find the values ¥;(¢;)y/%; and the position of the maximum point g;(¢)v/#, which
is at the point ko with the probability . If the uniform grid {t;}}_, contains the
point ¢ = 0, then dividing by v/ may result in unreasonably large values. In order
to avoid this, we remove this value together with the points of some neighborhood
of this point from the array of values. The number of such points depends on the
number N of intervals of the grid and the length of the time interval 7, on which
problem (1) — (5) is solved.

Using the described algorithm to each of the coordinates, we obtain the values of the
observation vector function y(t), on the basis of which we search for a solution to optimal
measurement problem (1) — (5).

To illustrate how this algorithm works let’s take the perturbed signal on the interval
(0;2) and divide it into 200 parts, and get the parameters 7 = 2 and N = 200. Thus
algorithm gives the values, the graphs of which are shown in Fig. 2. Fig. 3 shows graphs
of the original and restored values.
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Fig. 2. Graphs of the original, noisy and restored components
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restored

s OTigiNG|

Fig. 3. Graphs of the original and restored signals

Conclusion

In the future, we intend to conduct computational experiments for constructing

observation values from experimental data distorted by a multidimensional “white noise”.
In addition, the described procedure can be applied both to noises of another type and to
other a priori information about the properties of the useful part of the signal.
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METO/ IIBITBEBA — 9YYJ/INYKOBA 1JI4 IIOCTPOEHUMNA
NSMEPEHUSA B MOAEJIN ITIECTAKOBA - CBUPNJIOKA

M.A. Cazadeesa', E.B. Buukos', O.H. Ifuinaenkosa
TOkn0-Ypasbeknil rocynapeTBeHHbli yHuBepenTeT, I. Yeasaoumnck,
Poccniickas @eneparust

OHUM U3 [IOXO0IOB PEIeHNs 33,1491 BOCCTAHOBJIEHUsI NCKAYKEHHOT'0 BXOIHOTO CUT'HAJIA
[0 PErUCTPUPYEMBIM BBIXOIHBIM JAHHBIM JATINKA, SIBJISIETCS 3aJ[a9a ONTUMAJIBHOIO JIMHA~
MUYECKOro m3Mepenusi — mogiesib [llecrakoBa — CBUpHIIOKaA. DTa MOJIEIIb SIBJISIETCsI OCHOBOI
TEOPUN ONTUMAJIBHBIX JUHAMUYICCKAX U3MEPEHUN U COCTOUT U3 3a]a9i MUHUMU3AINNA Pa3-
HOCTH 3HAYECHWI BUPTYAJIHHOIO HABJIIOJEHNsI, IOy YeHHOTO C MMOMOIIHIO PACIETHON MOJIeIH,
U 9KCIIEPUMEHTAJbHBIX JIAHHBIX, OOBIYHO MCKAXKEHHBIX HEKOTOPBIMHU IIOMeXaMu. B crarbe
paccmarpuBaercst Mojiestb [llecrakoBa — CBUPHIIOKA ONTUMAJIBLHOTO JIMHAMUYIECKOIO M3Me-
peHusi Ipy HaJUYIuUU 1moMex pasHoro suija. OCHOBHOE BHMMAHWE B CTAThe OOpAIEeHO Ha
[IpeJIBAPUTEILHBII STAIl UCCIEI0BAHNS 3849l ONTHMAILHOTO JUHAMUIECKOTO U3MEDEHMS,
a mMenHo Ha MeTox IIbrTheBa — Uy mnmaKoBa TOCTPOEHUST JAHHBIX HAOJIIONEHNS, T.€. IIPeodpa-
30BaHUsI JAHHBIX SKCIEPUMEHTA JIJIsi OYUCTKU UX OT IIOMEX B BUJe <0OeJIoro nyMass, IoHuMa-
eMOro Kak IpousBojHas Henbcona — [Mkmxa OT MHOrOMEPHOTO BUHEPOBCKOT'O IIPOIIECCA.
JJist MCIIOJIb30BAHUST 9TOrO METOJIa HCIIOJIb3yeTCsl allpUOpHasi MH(MOPMAIUsS O CBOWCTBAX
dYHKINH, OMUCHLIBAIONINX HAOJIIOIEHTE.

Karouesvie croa: onmumasvroe 0uHAGMUMECKOE USMEPEHUE; CUCTNEME AEOHTNDEGCKO20
MUNA; MHO2OMEPHBIT 8UHEPOSCKUl mpouecc; npoudsodnas Heavcona — Lauxauza; anrzo-

PUMM PEULeHUA 360aHU.
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