MSC 68T10 DOI: 10.14529/mmp200408

TRAINING VIOLA-JONES DETECTORS FOR 3D OBJECTS BASED
ON FULLY SYNTHETIC DATA FOR USE IN RESCUE
MISSIONS WITH UAV

S.A. Usilin' =3, V.V. Arlazarov'™*, N.S. Rokhlin®, S.A. Rudykad’,

S.A. Matveev’, A.A. Zatsarinnyy’

!Smart Engines Service LLC, Moscow, Russian Federation

2Federal Research Center “Computer Science and Control” of the Russian Academy
of Sciences, Moscow, Russian Federation

3Moscow Institute of Physics and Technology, Moscow, Russian Federation
nstitute for Information Transmission Problems (Kharkevich Institute) of the Russian
Academy of Sciences, Moscow, Russian Federation

Baltic State Technical University “VOENMEH” named after D.F. Ustinov,

St. Petersburg, Russian Federation

E-mails: usilin@smartengines.com, vva@smartengines.com, 5harkl@rambler.ru,
rudika sa@voenmeh.ru, matveev sa@voenmeh.ru, azatsarinny@ipiran.ru

In this paper, the problem of training the Viola—Jones detector for 3D objects is
considered on the example of an inflatable life raft PSN-10. The detector is trained on
a fully synthetic training dataset. The paper discusses in detail the methods of modelling
an inflatable life raft, water surface, various weather conditions. As a feature space, we use
edge Haar-like features, which allow training the detector that is resistant to various lighting
conditions. To increase the computational efficiency, the L1 norm is used to calculate the
magnitude of the image gradient. The performance of the trained detector is estimated on
real data obtained during the rescue operation of the trawler “Dalniy Vostok”. The proposed
method for training the Viola—Jones detectors can be successfully used as a component of
hardware and software “assistants” of the UAV.

Keywords: machine learning; object detection; Viola—Jones; classification; 3D object;
UAV; rescue mission.

Introduction

At the present time various types of unmanned aerial vehicles (UAVs) have been used
for quite a long time [1]. Such complexes are used in the army, various law enforcement
agencies, as well as emergency services. UAVs are widely used in search and rescue
operations. Surveying the area using a UAV can significantly speed up the search for
victims [2|. Actually, UAVs are used especially effectively in search and rescue operations in
areas with extreme natural and climatic conditions (for example, in conditions of constant
ice cover or drifting ice in the Arctic seas) [3].

In general, UAVs are mainly equipped with optoelectronic or thermal imaging detection
equipment. Vision systems come to the fore to support search and rescue operations. Due to
the long-range range and rather high levels of spatial and color resolution of modern linear
and matrix optical radiation detectors, technical vision systems can serve as irreplaceable
sources of information for automatic recognition, navigation, guidance, and information
support for search and rescue operations [4,5].

94 Bulletin of the South Ural StateUniversity. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2020, vol. 13, no. 4, pp. 94-106



I[TPOI'PAMMIPOBAHNE

The problem of finding objects is one of the key tasks of such “assistants”. Today
machine learning is used as the main tool for solving such problems |1, 6, 7]. However,
the use of machine learning methods to automate various UAV tasks faces a number of
difficulties. First, almost all modern machine learning methods use a statistical approach
to training detectors and classifiers. This means that it is necessary to prepare a fairly
extensive training dataset to train classifiers and detectors. Fortunately, rescue operations
do not take place very often in our world. As a result, it is not possible to collect a sufficient
number of training samples. Moreover, the methods of “augmentation” (reproduction of
real data) [8,9] are also poorly applicable in this problem, since often real data are absent
at all.

The second problem when developing “assistants” for UAVs is the limitations on
computations. Obviously, computer vision tasks should be performed directly on board
of the UAV, where in general weak but energy-efficient computers are installed [3].
Consequently, deep and heavy neural networks cannot be used to solve the object detection
and recognition problem.

The solution to the above problems is training the object detector on fully synthesized
data. This approach is actively used to solve various recognition problems. So, there are
OCR technologies [10,11] trained entirely on synthesized data [12,13]. Moreover, there are
methods to train deep neural networks to recognize 3D objects [14].

In addition to neural networks, other statistical methods for training detectors and
classifiers are currently investigated for the applicability of synthetic training dataset. So,
there are several works that consider the issue of training the Viola—Jones detector for
2D and 3D objects [15,16]. However, it is arguable that due to the peculiarities of the
Viola—Jones algorithm, it is not possible to train an effective object classifier [16].

In this paper, we consider the problem of training the Viola—Jones detector for a 3D
object using fully synthetic data. The inflatable life raft PSN-10 is chosen as the object
under study (see Fig. 1). Although the target infatable life raft is orange, we consider
grayscale images only. This is due to the fact that in most cases UAVs are equipped with
monochromatic cameras, since such cameras are more light-sensitive than color ones. The
main focus of the paper is made on the method of generating a training dataset and
choosing the feature space which allows to train an efficient Viola—Jones detector of the
PSN-10 life raft even on the grayscale images.

1. Inflatable Life Raft PSN-10

The inflatable life raft PSN-10 (Fig. 1) is a means of collective rescue of the crew
and passengers of ships [17]|. The raft has a capacity of 10 people. The raft ensures that
the estimated number of people is kept afloat in sea conditions, protects them from the
effects of bad weather and sudden temperature fluctuations. The raft carries food and
water supplies, as well as life-saving essentials and signaling equipment to facilitate the
search for people in distress. The life raft consists of the following main parts: an inflatable
buoyancy chamber, inflatable racks to support the awning, inflatable bottom, and double
awning with a heat-insulating air gap. The life raft PSN-10 is often used on Russian
high-capacity cargo ships.
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Fig. 1. A sample of the inflatable life raft PSN-10

2. Viola—Jones Object Detection Method

The Viola—Jones object detection method was developed for real-time face detection
in images [18,19]. This method reduces the detection problem to the problem of binary
classification at each image point, that is, for each rectangular image area taken with all
kinds of shifts and scales, the hypothesis of the presence of the target object in the area
is checked using a pre-trained classifier.

The Viola—Jones method uses rectangular Haar-like features [20], the value of which
is calculated as the difference between the sums of the pixel’s intensity of the image areas
inside the adjacent rectangles. For efficient calculation of the value of Haar-like features, an
integral image is used. In the literature, the integral image is also known as “summed-area
table” [21], which for a grayscale image f(y,z) with dimensions M X N is determined as

follows:
Ii(y,x)= > f(i,j).

1<y,j<x

The Viola—Jones method associates with each feature a binary “weak” classifier h (z) :
X — {—1,+1}, which is usually presented as a decision tree with one branch:

_ L ifpe flz) <p-6;
h(x) ={ —1, otherwise,

where 6 and p are the threshold value of the feature and the parity of the classifier,
respectively. Using the AdaBoost machine learning method, a “strong” classifier is
constructed as a linear superposition of the above “weak” classifiers:

S(x) = [Zat-ht(az) >0] )

where [-] is an indicator function.
The high speed of the Viola—Jones method operation is ensured through the use of a
cascade of “strong” classifiers, which allows localizing “empty” (object-free) image areas in
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a small number of calculations:

Cascade (x) = H [Si (x) > 0].

=1

The object detection in the image is performed by the constructed binary cascade classifier
using the sliding window method [18,19].

2.1. Edge Haar-Like Features

In order to construct an effective and resistant to different luminance object detector,
one uses different kinds of edge features. In our work we use the original feature space
described in the papers [22,23|. These features are rectangular Haar-like features calculated
over the magnitude of the image gradient.

Unlike the classical Haar-like features, such edge features are effective in generalizing
objects containing a huge number of edges and robust to different luminance conditions.

Fig. 2 presents a sample of PSN-10 liferaft image: both the source grayscale image
and the magnitude of the image gradient computed using the L1 norm.

Fig. 2. A sample of PSN-10 image: (a) the source grayscale image, (b) the magnitude of
the image gradient

3. Data Synthetization

To obtain 2D images, it is necessary to simulate the PSN-10 raft [17], simulate the
water surface, place all objects on the scene, and create animation for the objects. In
order to construct a correct 3D model, we found enough information about the life raft
characteristics and a set of images. Fig. 3(a) presents a sample photo of the real PSN-10
life raft.

As a set of requirements to images, we take to be grayscale images with resolution of
1920x1080 px and contain only one item of the life raft PSN-10. The weather condition
are considered to be variable, and the excitement of the water should not exceed 2 points.

All these requirements were considered in the data synthesis process described below.
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(b)

Fig. 3. The life raft PSN-10: (a) the source image of the raft, (b) the 3D model of PSN-10

3.1. PSN-10 Modelling

Based on the found photos, a 3D model of the raft was constructed (see Fig. 3(b)).
In order to construct the 3D model, we used the Blender software [24]. To simplify the
modelling process, we decided to divide the raft into the following components: sides,
awning, rope, bottom, small pillow.

After modelling, textures (images that reproduce the visual properties of any surfaces
or objects) and shaders (programs for the graphics card processor that are used in 3D
graphics to determine the final parameters of an object or image) must be applied to all
parts of the raft.

The model is constructed with a low polygonal mesh, since the images are obtained
from a long distance to the object and the angularity of some parts of the raft is not
visually noticeable, but this approach allows to draw the object in the final image quicker.

3.2. Water Surface Modelling

The Blender software allows to create a water surface by applying the “Ocean” modifier
to the plane. The settings allow to make the water surface of the desired size, adjust the
depth, set the wave size, wave direction, wind strength, adjust the foam generation, etc.

After adjusting water surface parameters, we applied shaders to make the water appear
more realistic. Empirically, we selected a combination of shaders that gives an image close
to real water.

3.3. Scene Modelling

The stage of modelling the scene consists of placing objects, setting up animation,
lights, camera movement, etc. Since the problem is to detect a drifting raft, the PSN-10
model moves along the wave due to the movement of water. However, it is necessary to
adjust the interaction of the raft and the water surface, creating the effect of rolling the
raft on the waves. The camera moves along a randomly created curve, and the object
tracking function allows to keep the raft in focus.

The images should be given under different weather conditions, therefore, rain, snow
and fog were added to the scene. The raindrops and snowflakes were modelled separately.
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(a) (b)

(c) (d)

Fig. 4. Different weather conditions of modelled scenes: (a) rain, (b) snow, (c¢) frog, and
(d) fair weather

The Blender software also has built-in toolkit to add fog to a scene. Fig. 4 presents same
samples of the modelled scenes.

4. Experimental Results

In accordance with described above technique we prepared 3003 synthetic images. This
dataset was separated into two parts: the first one contained 600 images and was used to
train the life raft detector while the remaining part (2403 images) was used to evaluate
the quality of the trained detector.

The training dataset was used to generate both positive and negative samples. The
negative samples are produced by cutting “empty” sub-windows (image regions without
life rafts) from the source images. We used Edge Haar-like Features as described above.

All in all, we trained the cascade classifier, which consists of 11 levels and contains 55
features. The full structure of the trained cascade classifier is presented in Table 1.

Table 1
The structure of the trained cascade
classifier of the life raft PSN-10

Level No. 1121345671819 ]10]|11
Weak Classifier Count |22 [3 (5|4 |6|7|5|5] 9| 7
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The remaining part of synthetic dataset contained 2403 images and was used to
evaluate the quality of the trained detector. Using specified dataset, we calculated the
following measures: true positive (actual positives that are correctly identified), false
positive (actual negatives that are classified as positives) and false negative (actual
positives that are not detected with the trained detector). Based on specified statistical
measures precision (positive predictive value), recall (true positive rate) and F-measure
were calculated. All values are presented in Table 2.

Table 2
The quality of trained life raft detector evaluated on the synthetic data

True Positive | False Positive | False Negative | Precision | Recall | F-measure
2374 69 29 0,97176 | 0,98793 | 0,97978

In our problem, it is very important to detect all life rafts. Consequently, false negative
errors are much more serious than false positive errors. That is why the value of recall
measure is more important in our problem.

In order to estimate the applicability of the trained detector to real cases, we found
a few images from the real rescue operation. The Russian-flagged fishing trawler Dalniy
Vostok sank on 1 April 2015, off Russia’s Kamchatka Peninsula in the Sea of Okhotsk.
Half of the crew was rescued thanks to the fact that they successfully evacuated on time
on inflatable life rafts PSN-10. There is a set of videos of this rescue operation on the
Internet in free access.

Therefore, based on the video, we prepared a small dataset contained 161 images. It is
clear that such a small dataset cannot be used for fully-featured evaluation of the detector
but can be useful to estimate the applicability of the trained detector to real data. Fig. 5
demonstrates how the trained detector works on real data.

Fig. 5. Evaluation of the trained life raft detector on the real data (rescue operation of
the Russian-flagged fishing trawler Dalniy Vostok in 2015)

Table 3 shows the quality of the trained detector on the real data. In general, the
quality on the real data is less than the quality on the synthetic data. This fact can be
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explained by significantly different weather conditions. The excitement of the water is big
enough in the real dataset, while it was not exceed 2 points in our synthetic data.

Table 3
The quality of trained life raft detector evaluated on the real data
(rescue operation of the Russian-flagged fishing trawler Dalniy Vostok in 2015)

True Positive | False Positive | False Negative | Precision | Recall | F-measure
143 48 18 0,74869 | 0,88820 | 0,81250

Conclusion

This paper considers the problem of training a detector like Viola—Jones one for 3D
objects on a fully synthetic training dataset. The PSN-10 inflatable liferaft was chosen
as the object under study. To obtain training images, we simulated the PSN-10 life raft,
simulated the watersurface, placed all objects on the scene, and created animation for
the objects. In accordance with described technique we prepared 2403 synthetic training
images.

In order to construct an effective and resistant to different luminance object detector we
used original edge features described in the papers [22,23]. To increase the computational
efficiency, the L1 norm was used to calculate the magnitude of the image gradient.

To estimate the applicability of the trained detector to real cases we found a few images
from the real rescue operation of the Russian-flagged fishing trawler Dalniy Vostok sank
on 1 April 2015. It was shown that Viola—Jones detector trained on fully synthetic dataset
sufficiently works on real data.
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*BasrtuiicKuit rocyapeTBenHbli Texandeckuit ynusepcurer < BOEHMEX>

uMm. JI.®. Verunosa, r. Cankr-IlerepOypr, Poccuiickas ®enepariust

B pabore paccmarpuBaercs 3amada obyuenus gerekropa Buosisl — xomca miis 3D 06b-
€KTOB Ha IpuMepe Ha LyBHOTrO cracareabHoro mwiota [ICH-10. O6yuenue jerekTopa BBIIOJ-
HSETCS Ha, TMTOJTHOCTHIO CHHTETHIECKOM 00y JarorieM Habope. B paboTe moapobHO paccMaTpu-
BAIOTCsl CIIOCOOBI MOJIEJIMPOBAHUST HAJLyBHOT'O CIACATEIBHOIO ILJIOTA, BOIHOM IOBEPXHOCTH,
Pa3JIMYHBIX OTOJHBIX YCJIOBUA. B KadecTBe IPU3HAKOBOIO MPOCTPAHCTBA HUCIIOJIB3YIOTCSI
IPAHUYHBIE TIPU3HAKY, [TO3BOJISIONINE OOYIUTh JIETEKTOP, YCTONYIUBbIA K Pa3IMIHBIM yCJIO-
BUSIM OcCBelrenusi. JIjIsi MOBBIMIEHNsT BBIYUCIUTEIHHON 3DDEKTUBHOCTU PU BBIYUC/IEHAN
3HAYEHNsT IPAJIUEHTa UCI0JIb30Basach HopMa L1. DdderTuBHOCTH 06y IEHHOTO JIETEKTOPA
OIIEHEHA B TOM YHCJIe Ha PeAJIbHBIX JAHHBIX, [IOJIyUYE€HHBIX B IIPOIECCe CIIacaTe/IbHOI omepa-
uu Tpayiepa </lanpanit Bocroks. [Ipemioxkennsbiii B pabore criocob o0ydeHust 1eTEKTOPOB
Buouibr — /I2k0HCa MOXKeT OBITH YCIIEITHO UCIIO/IB30BAH B KAYECTBE COCTABJISIFOIIETO 3JIEMEHTA
[IPOrPaMMHO-AIIIaPATHBIX <accucTeHToB> BITJIA.

Karouesvie crosa: mawunnoe obyuerue; nouck obsexmos; Buoaa — loconc; xaaccu-

Purayusn; 3D-obsexmuo; BIIJ/IA; cnacamesvnan muccus.
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