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This article is a survey. The results on well-posedness of inverse problems for
mathematical models of heat and mass transfer are presented. The unknowns are the
coefficients of a system or the right-hand side (the source function). The overdetermination
conditions are values of a solution of some manifolds or integrals of a solution with weight
over the spatial domain. Two classes of mathematical models are considered. The former
includes the Navier—Stokes system, the parabolic equations for the temperature of a fluid,
and the parabolic system for concentrations of admixtures. The right-hand side of the
system for concentrations is unknown and characterizes the volumetric density of sources
of admixtures in a fluid. The unknown functions depend on time and some part of spacial
variables and occur in the right-hand side of the parabolic system for concentrations. The
latter class is just a parabolic system of equations, where the unknowns occur in the right-
hand side and the system as coefficients. The well-posedness questions for these problems
are examined, in particular, existence and uniqueness theorems as well as stability estimates
for solutions are exposed.
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Introduction

First, we consider the system

u — vAu+ (u, V)u+ Vp = f + B.C + 0, divu =0, (1)

O; — div (A\gVO) + (u, V)O = f, (2)

Ci+ (u,V)C — Lu = f., Lu= Z ijCopn; + Z a;Cy, + aogC, (3)
ij=1 i=1

where v = const > 0, (z,t) € Q@ = G x (0,T), G C R", T < oo, u, ©, p, C are the
velocity vector, the temperature of a fluid, the pressure, the concentrations of admixtures
(inorganic or organic) in a fluid, and f, is the volumetric density of sources of admixtures,
respectively. The system (1) — (3) describes the propagation of admixtures in a fluid. In
particular, it includes the classical Oberbeck—Boussinesq model (see, for instance, [1-3]).
Here a;j, a;, ap are matrices of dimension i x h, with h the number of admixtures, B¢
is a matrix of dimension n x h, fg is a vector of length n, A¢ > 0 is a scalar function.
The description of these class of models can be found, for instance in [4], where even
more general models can be found derived on the base of thermodynamics of noninvertible
processes. The functions fy and f are the densities of the heat sources and external forces.
The coefficient Ay stands for the thermal diffusivity. In the Oberbeck—Boussinesq model,
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the vector-functions . and [y are the mass transfer coefficient and the heat-transfer
coefficient multiplied by the free fall acceleration. For generality, we assume below that j,
and [ are vector-functions of the variables (x,t).

For simplicity, we assume the domain G to be bounded though the main results are
valid for a wide class of unbounded domains as well. The system (1) — (3) is furnished
with the initial and boundary conditions

u’t:O = Uy, u’S = gl(ta 33'), I'= aGa S =TI x (07T>7 (4>
Olt=o = O, B1O|s = ¢2(t, ), (5)
Clizo = Cy, ByC|s = gs(t, x), (6)

n
where Biu = u or Biju = Z’yli(x,t)% + oy(z, t)u, with vy;, 01 some functions, and
71 1

1=
n
Bou = u or Bou = Zwi(x,t)% + ooz, t)u, with 79;, 09 some matrices of dimension

h x h. -

We consider an inverse problem of defining a solution to the system (1) — (3) and the
right-hand side f. in (3) using the data of additional measurements on cross-sections of G.
Let 2" = (zpa1, Tra2y - xn), k=0,1,...,n—1. If £ > 1 then we put 2’ = (21, 29, ..., T).
The right-hand side is of the form

fc:fO(xat)+Zfi(xat>qi(x/7t)a (l’,t) eQa (7>
i=1
where f; (i =0,1,...,m) are given vector-functions. The functions ¢;(z’,t) (¢;(t)) in this

representation are unknown and the overdetermination conditions for recovering these
functions are of the form

C\Si:wi(t,x), SZ:(O,T>XFZ, i:1,2,...,8, (8)

where {I';} is a collection of smooth k-dimensional surfaces lying in Gy. For k£ = 0, the
surfaces I'; are just points lying in G. One more overdetermination condition is of the form

/(C, wi(x))dr = (t), i=1,2,...,r, 9)

G

where the brackets denote the inner product in R”, ¢;(x) is a vector with h components,
and v;(t) are given functions. We do not know the articles where the inverse problems (1) —
(8) or (1) — (7), (9) for the complete system are studied except for the author articles [5-7].
We can refer to [8], where a series of results devoted to optimal control problems for the
systems occurring in the class (1) — (3) in the stationary case can be found. Optimal control
problems for some simpler models are studied in [9-11]. The description of numerical
methods of solving directs problems for Oberbeck-Boussinesq model is exposed in [3].

Many results connected with solvability of inverse problems for the Navier—Stokes
system and the linearized Navier—Stokes system are presented in [12]|, where the main
results are connected with the ovedetermination conditions of the form (9).
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The inverse problems (1) — (8) and (1) — (7), (9) as well as the problems (3), (6),
(8) and (3), (6), (9) for parabolic equations and systems arise when describing heat and
mass transfer, filtration, diffusion, and some other physical processes [13,14]. We can note
that, in a real situation, even the simplest one-dimensional models used in monitoring
and warning systems for river basins include several parabolic equations relative to
concentrations. For parabolic equations and systems, the problems of the above type
are studied in many articles and we can refer to the book [15|, where these problems
are discussed in the case of parabolic equations of the second order and & = n — 1. The
overdetermination conditions here are values of a solution on sections of a spatial domain
and the coefficients are independent of some spatial variables, the latter allows to apply
the Fourier transform and to simplify the problem. The inverse problems with additional
data on planes (sections of a spatial domain) are considered also in [16,17] and some other
articles. More general inverse problems with data on surfaces of arbitrary dimension are
studied in [18-21]. The most known overdetermination conditions used in these problems
are the values of a solution at some collection of interior points of G. Thus, additional
conditions are the data of measurements (for example, the concentration of the transferred
substance) at certain points in the domain. The data are employed to determine both the
sources (for example, sources of pollution in water or air) and environmental parameters.
The unknowns ¢;(z’,t) depend in this case only on ¢. Thus, the right-hand side in (3) is

representable as f. = fo(z,t) + > fi(x,t)qi(t). The inverse problem is to find a solution
i=1

to the system (3) and the functions ¢;(t), ¢ = 1,2,...,r, that appear in the right-hand
side (3) or in the equation itself from the data (6) and (8), where S; = {z;} are points.
In the heat and mass transfer and filtration problems, the right-hand side f,. characterizes
the distribution of sources (sinks) and their intensities. In the case of point sources, i.e.
fi = 0(x—ux;), where ¢ is the Dirac delta function, ¢; is the intensity of the i-th source in the
heat and mass transfer problems, and in filtration problems, for example, in oil production
¢; is the flow rate i-th well, in this case u is the pressure [22]. In various practical problems
distributed and point sources as well are both employed. First, we describe some results
devoted to problems with spatially distributed sources. A large number of results was
obtained in the case a linear second order equation.

We can refer to the article [23], where a theorem on the existence and uniqueness
of solutions to problem (3), (6), (8) on determining the source in Holder spaces in
the case h = 1 and r = 1 is obtained. Similar results in the case of the problems of
determining the source function and coefficients were obtained in the monograph [24] but
in a one-dimensional situation (n = 1). In [25] the problem of determining the lowest
order coefficient in a parabolic equation was considered, and in [26], the lowest order
coefficient and the right-hand side of the form ¢(¢)f(¢,z) are determined. In both cases,
the well-posedness of the corresponding inverse problems is proven. There are many articles
devoted to model equations and systems mainly in the one-dimensional situation (see, for
example, [27,28]). The first most essential results for quasilinear equations of the form
(3) were obtained in [29], where conditions for a nonlinear function depending on u, Vu
were derived that guarantee the global solvability (in time) of the problem (3), (6), (8)
in the Holder spaces for case » = 1. The authors of [30] obtain a similar result already in
the case of a parabolic system and in the Sobolev spaces. The problem of local or global
well-posedness of linear and quasilinear problem of the form (3), (6), (8) in the Sobolev
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spaces was further considered in the articles [31-33|. In the general setting quasilinear
inverse problems are considered in the book [12|, where the relevant bibliography can be
found. The authors consider a nonlinear nonautonomous first order operator-differential
equation. The operator in the main part is a generator of an analytic semigroup. The
overdetermination conditions are a collection of functionals defined on a given Banach
space. The inverse parabolic problems with the overdetemination conditions (8), with
k = 0, and (9) are thus included in this statement. The problem was studied in the
spaces of functions continuously differentiable with respect to t. However, the constraints
imposed on the nonlinearity are rather strong and can be essentially weakened. Weaker
assumptions on the nonlinearity are used in [34|, where the domain of the operator A(t)
in the main part can depend on time and the main results are stated in the Sobolev
spaces. The article [35] contains the results on solvability of a linear inverse problem of
recovering the function f(¢) in the operator-differential equation u, + Au = f(t)z with the
overdermination conditions ®(u) = ¢(t) (P is a functional). A huge amount of articles
is devoted to numerical solving the problems of the form (3), (6), (8). We can refer,
for example, to the articles [36-38|. There is a large number of monographs devoted to
numerical methods for solving inverse problems. Almost all inverse parabolic problems
and a large number of numerical methods are considered in the monograph [14] in the
case n = 1. The monographs [39, 40| are devoted to a more general situation; number
of interesting statements and problems (including those of convective heat transfer) are
considered in [41,42].

Describe some results in the case of point sources. As already noted, these problems are
not well-posed in the classes of finite smoothness, and there are practically no existence and
uniqueness theorems for solutions [43]. There is a huge number of articles devoted to the
numerical solution of the problem of determining point sources, however, as a rule, these
articles do not contain any theoretical justifications and very often both non-existence
of solutions and their non-uniqueness can take place in the corresponding problems for
certain values of parameters. The articles [45-47] can serve as examples. Let us single
out the articles, where there is some theoretical justification of algorithms for finding
solutions [48-53]. Note that in this case we need to determine the number of sources,
their locations and intensities. The most interesting idea of constructing point sources is
presented in [51]. It was subsequently used in [52]. Note that the problems of determining
point sources are nonlinear, in contrast to the case of distributed sources.

The well-posedness questions for parabolic equations and systems with the
overdetermination conditions (9) (including numerical methods) are treated in many
articles. The first article probably is that by A.L. Prilepko [56] with coauthors, where
the question of recovering the right-hand side f = q(t)g(x,t) + fo(x,t) (the unknown
is the function ¢(t)) in a parabolic equation was examined in Holder spaces. Next, we
should refer to the well-known article [57] (see also [58]), where general nonlinear parabolic
problems were considered in the one-dimensional case also in Holder spaces. In particular,
it is established under certain condition (at most linear growth of the nonlinearity in u, u,
at infinity if the main part of the equation is linear) that the solvability of the inverse
problem with the overdetermination conditions of the form (9) is global in time. Next, we
can refer to [59-67|, where inverse problems of recovering coefficients depending on time
in the case of the » = 1 in a linear parabolic equation. There are examples of simultaneous
determination of the right-hand side and the coefficient (see, for instance, [68], where
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n = 1). The inverse coefficient problems for the parabolic system of the second order having
a special structure was studied in [59] in the Holder spaces. Here the overdetermination
conditions (9) and (8) for the parabolic system (3) are used simultaneously. Examples
of recovering the right-hand sides in a second order parabolic equation are presented
in [69-72]. The multidimensional inverse problems of recovering the right-hand side and
coefficients simultaneously are studied also in [44,73,74] in the Sobolev spaces.

Among the monographs devoted to inverse problem for parabolic equation and systems
we note the monographs [12, 14, 15,42, 75-81|, where the sufficient bibliography can be
found.

Describe the contents of the article. The next section contains some conventional
definitions. Section 2 contains the results on solvability of the problems (1) — (8) and
(1) = (7), (9). Section 3 is devoted to solvability of the parabolic problems (3), (6), (8) and
(3), (6), (9), where the operator L is replaced with a higher order elliptic operator. The
notations of function spaces are conventional (see, for example, [54,55]).

1. Definitions and Notations

Let E be a Banach space. By L,(G; E) (G is a domain in R") we mean the space
of strongly measurable functions defined on G with values in £ endowed with the norm
lw(@)||ellz,c) [54]. We employ also the Hélder spaces C*(G) (see the definition in [54]).
The Sobolev space notations are conventional, i.e. W3 (G; E), W;(Q; E), etc. (see the
definitions in [54,55]) designate the Sobolev spaces of functions with values in E. If E = C
(E=R)or E=C" (E = R") then the latter space is denoted by W;(Q). Similarly, we use

the notations W3 (G) or C*(G) rather than W;:(G; E) or C*(G; E). Thus, the membership

u € W3(G) (or u € C%(Q)) for a given vector-function u = (u1, ug, ..., ux) means that
every of its component u; belongs to W3 (G) (or C%(G)). The norm of the vector is just the
sum of the norms of the coordinates. The same meaning has the membership a € W3 (G)
for a matrix-function a. Given an interval J = (0,7, put W;"(Q) = W, (J; L,(G)) N
Ly(J; W3(G)). Respectively, W>'(S) = W) (J; Ly(T)) N L,y (J; W3 (I')). Similarly, we can
define the Holder space C™*(Q).

Next, we present some auxiliary statements. For simplicity, we assume that G is
a bounded domain, though many of the results are valid in the case of unbounded
domains as well. Let the symbol Bs(x;) stand for the ball centered at z; of radius 9.

As conventionally, we denote by L, ,(G) the closure of solenoidal C§°-vector-functions in
the norm of L,(G) and put WS (G) = W3(G) N Ly,(G) and Was2(Q) = WA (Q) n

L,(0,T;L,,(G)) (s >0). The symbol W »(G) designates the closure of Cg°(G) in the norm
of the space W7 (G) and qu(G) = {p € Ly10c(G) : Vp € L,(G)}. We identify functions
which differ by a constant and endow this space with the norm HpHqu(G) = |Vp|L, - It
is a Banach space.

Consider the parabolic problem

Ut+LU: f; Bju‘S:gju U(O,l‘) :Uo(l'), (1())

where Lu = 3 oo, aa(t, z) D%, Bju = D jal<m; bja(t, 2) D*u. Introduce the operators
Lou = 3 4 jcom @a(t, ) D% and Boju = 37, _,,. bja(t, ) D*u. We say that the problem
(10) satisfies the (PL) condition (see [82, p. 198| and [83, Ch. 7]) if
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(PL) a) there exists a constant §; > 0 such that any root p of the polynomial
det (Lo(t,z,i€) + pE) = 0
(E is the identity matrix) satisfies the inequality
Re p < —§1[¢]*™ VE € R™ V(x,t) € Q;

b) for every point (ty,zo) € S, £ € R™ such that (§,v(zg)) = 0 (v(z) is the outward
unit normal to I" at ), and all h € C", X such that Re X > 0 and |[£| +|\| # 0, the system

()\E—i—(—l)on(xo,t0,§+i1/(3:0)8y))v(2) =0, y >0, By(xg,to,{+iv(zo)d,)v(0) =h, (11)

has a unique solution decreasing at infinity of the class C([0, c0)).
The algebraic conditions ensuring the condition (PL) (the parabolicity condition and
the Lopatinskii condition) can be found in [83], for example.

2. Inverse Problems (1) — (8) and (1) — (7), (9)
First, we describe the conditions on the data of the problems (1) — (8) and (1) — (7),

(9).
(A) The case of k > 0. There exists a domain {2 C R¥ with boundary of class C? such
that G C Q x R* %,

Pz‘ - {-r S Rn : ZL‘” = SOi(I/) = (‘P;‘Hl(x,)? (,02+2($/), R @;(fl)), 'r/ € Q}7
¢'(a") € C*(Q) and there exists a constant § > 0 such that
Usi = {(«/, 0" (2") +n): 2/ €Q, neR"™ | <d}CG

fori=1,2,...,s,and Us; N Us; =0, fori # j, 1,5 =1,2,...,s.

The case of kK = 0. In this case the sets I'; are points and we assume that these points
are interior points of G.

In what follows, we use the following notations: Qo = Q x (0,7T), Sog = 92 x (0,T),
QS = X (O,T), ST =1 x (0,7‘), G5 = UZ'U&, and Q5 = G5 X (O,T), Qg = G(; X (O,T),
QT =G x(0,7).

The condition (A) have been used in all articles devoted to the problems in question.
As is easily seen, it ensures uniqueness of solutions. The condition (A) is fulfilled if G =
Q x R** with  a bounded or unbounded domain of class C?.

First, we present our conditions for the data. Let f;(2/, 2", t) ((a',t) € RF+! 2" € R*k,
j =1,2,...,7r) be the zero extension of the function f; from @ to R"™, i. e., fj =0 on
R™1\ Q. In view of the condition (A), we can assume that the functions ¢; (j = 1,2,...,s)
in (8) depends on the variables 2/, ¢ only, i. e., ¥; = ¥;(2/,t) ((2/,t) € Qo). We also assume
that the parameter § > 0 used below is that of this condition. First, we consider the case
of the Dirichlet boundary conditions in Theorems 1, 2 below.

The agreement and smoothness conditions. Let ¢ > n+2 and there exist vector-
functions ®;, 3 and function ®, such that

Di(t,x) € W2HQ) : Pif—o = uo, Pali—0 = Oo, Psli—0 = Co, Pi|s = g, (12)
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div cbl = 07 (1)3’5], = wja an f97 f € Lq(Q)7 fNj € Loo(QOa Lq(Rnis»a (13>
vac”cI)3 € Wj71(Q5)7 Vx”fo € Lq(Q5)7 fju vac”fj € LOO(Q5)7 (14>
where j =1,2,...,r and 1 = 1,2, 3. As a consequence of these conditions and embedding

theorems, we can conclude that

ug, Co, 09 € B2 /1(G), g; € W2/e1m1/CD(8) i =1,2,3,

VurCo € BE79(Gs), Vangy € WV VCD(S5) - api(t,2") € W2H(Qo),

where j = 1,2...,r and S5 = (0G5 NT') x (0,T). If these smoothness conditions and
the corresponding agreement conditions (see trace theorems, for instance, in [54]) hold
then we can construct the corresponding functions ®;. For example, if g = 0, divug = 0,
q > 3/2, and the above smoothness condition for ug holds then the agreement condition
on the vector-function wuy ensuring the existence of ®; is the condition ug|r = 0.

Let B(2',t) be the matrix whose rows with the numbers from (j — 1)h + 1 to jh,
J=1,2,..., s are occupied by the vectors

[fl(x/a (pk(x/>7 t)a fQ(x/a gpk(]j/)’ t)a R fr(xla (pk(x/>7 t)] .
We require that there exist a constant d; > 0 such that
|det B(z',t)] > 61 a.e. in Q. (15)

We also assume that B
(B) M(x,t) >0 > 0V(x,t) € Q, N(x,t) € WL(Q), a;; € C(Q), and Vyra;; € Loo(Qs)
for all Za] = 17 27 s 1 Bca Qi Qo, ﬁ@ € Lq(Q)a vx”@h Vx”(lo S Lq(Q6>7 L= 17 27 N2 The

proofs of Theorems 1, 2 below can be found in [5-7].

Theorem 1. Assume that T' € C?, ¢ > n + 2, the problem (3), (6) satisfies the (PL)
condition, and the conditions (A), (B), (12) — (15) hold. Then there exists a number Ty €
(0,T) such that there exists a unique solution (u,p,0,C,q,...,q.) to the problem (1) —
(8) from the class

u € WqQ’l(QTO), p € Ly(0,70; qu(G’)), ¢ € LyQY), j=1,2,...,m,

0,0 e WP (Q™), VuCeW2HQR) Vo, <.

Let collections (u',p', O, C?, qt,...,q"), i = 1,2 be solutions to the problem (1) — (8) from
the above class corresponding two different collections of the data f*, fi, fi, j», ul, gfw
O, and Ct, 7 =1,...8,1=1,2,3, i = 1,2 satisfying (12) — (14) with some functions @;,
1=1,2, 7=1,2,3 and

3 ) A A
E(chguwg,l@) Ve @[l g, + 11 Lg@+

i@ + 1Filz@ + 19 fillegan ) < Ro, i=1,2.
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Fix 69 < 6. Then there exists a constant 79 > 0 such that the following stability estimate
holds:

it = w2l g0y + €1 = Oy gray + V(0" = P22,y

HICT = C iz groy + Ve (CF = C¥) 2 gy + = laj = a5l @) <

3
< C(Zl 195 — P32 (groy + I Var (P53 = @F) Iz gro) + 1fo = fllzo(@ro)+
]:
HF = Pllea@roy + [1fs = filla@o) + 1Var (fs = )z, @0):

where the constant ¢ depends on the quantities Ry and ds.

Proceed with the linearized statement. We examine the system

uy — vAu + Vp = ZBjuxj + Bou+ f+ 5.C + By©, divu =0, (16)
j=1
O — MAO+ Y b0, +hO = fo+ > Vuy, (17)
j=1 j=1
Cy—Lu=f.+ chuj, Lu = Z a;5Cs0; + ZaiCxi + aoC, (18)
j=1 ij=1 i=1

where Bj, By are n x n matrices. We assume that
(C) bj(xa t)a bO: bj: Cj: Cj: Co, Bj: BO S Lq(Q)7 v:t”cj(xa t) € Lq(Q5)7
where j = 1,2,...,n and § is the parameter that of the condition (A).

Theorem 2. Assume that T' € C?, ¢ > n + 2, the problem (3), (6) satisfies the (PL)
condition, and the conditions (A), (B), (C), (12) — (15) hold. Then there ezists a unique
solution (u,p,©,C,q,...,q;) to the problem (16) — (18), (4) — (8) from the class

u € W(1271(Q>7 pE L(I(OaT; qu(G))a q; € L(I(Q0>7 j = 1727 T
0,C e WqQ’l(Q), V. C e Wj’l(Q(;Q) Yoy < 0.
Fix 69 < 6. A solution meets the estimate
[ullyz1 gy + 1Ollwzr ) + 1VPlLy@ + [ICllwz1q) + Zl 1451l L4 (@0)
]:

3 19
IV Cllzigy) < <32 Illwzig) +1arslluza o+ (19)

+1 follzy@) + IV follLy@s) + 1 fllzg@) + 1 follzy@)-

Next, we consider the integral overdetermination conditions (9). Actually, these results
are new. We describe them without proofs. The proofs can be found in the forthcoming
paper in Itogi Nauki i Tekhniki (2020, vol. 187).
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In this case, we have that ¢; = ¢;(¢), i. e., the functions ¢; depend only on t.
Our conditions on the data can be written in the following form

ug € WquQ/q(G)? diUUO = 07 u0|F - 07 f7 f@?f() € Lq(Q)7 q> n -+ 27 (20)

OO('I) S Wq2_2/q(G)7 gg(l',t) S W;27282(S)7 BQ(x707 D)CO|F = gg(I,O), (21>
@O(x) € Wq2_2/q(G)7 92(x7t) € W;17251(S)7 Bl(x707 D)®O|F = 92(x70)7 (22>

where s; = 1 —1/2¢ if Biju = u (i = 1,2) and s; = 1/2 — 1/2q otherwise and we take
gi(z,t) =0 in (4)

¢z(t) S W;(O,T), ¢z(0) = /(CO(I)WOz(x)) de, 1=1,2,...,r, (23>
G;

a;(t,z) € Ly(Q) (i=0,1,...,n), a; € C([0,T];C*(G)), i,j=1,...,n,

Vij, 0 € 01/2—1/2p+€o,1—1/l7+60 (g)’ j = 1’ com, 0= 1’ 2’ (24>
where €9 > 0 is a positive constant
filz,t) € Lo(0,T; Ly(G)), 1 =1,2,...,71. (25)

Let {G,} be a collection of subdomains of G with boundaries of the class C'. We assume
that
w; € Ly(G), suppyp; C G; C G, @; € W:H(Gj), =1, 45j=12,...,m (26)

for some ¢; > 0.
Define the entries b;;(t) of the matrix B by the equalities b;; = [(f;, i(x)) dz and

a
suppose that there exist constants dg, d; > 0 such that
|det B| > ¢y > 0, a.a. on (0,7), (27)
Ag(l’,t) > 61 > 07 (ZE,t) S Q)u )‘9 € O(@)? 66769 € Lq(Q) (28>

Introduce the set By of vectors U = (uo, Co, Oo, g2, 93, [, fo, fo, U1, ..., ¥,), satisfying
(20) — (23) and such that
Iollz-216) + [Collz-2n )+ 190l ey + el s+ 195l

Hliflleg@) + lfollza@ + I follza@ + 2 IWillwgom) < B

Theorem 3. Assume that T € C?, the problems (3), (6) and (2), (5) satisfy the (PL)
condition, ¢ > n + 2, and the condition (20) — (28) hold. Then there exists a number

10 € (0,T] such that there exists a unique solution (u,p,©,C, q, ..., q) to the problem (1)
—(7), (9) from the class

u € WPHQ™), p € Le(0,70: W) (G)), 45 € Ly(QF), j=1,2,....7.
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Fiz Ry > 0. Then there ea:zst constants 1o = 17o(Ry) and ¢ = c¢(Ry) such that for every two
solutions u', ©%, C" q q = (¢, G2, - - - Qir), © = 1,2 relating to the collections U17U2
Br,, UZ- = (uo, O gh gk O fe fe bt k), i = 1,2, the following estimate holds:

||:L1 — W?[ly21(groy + 101 = O%llyp21 groy + 1CT = C? g2 groy +
+ 21 lq15 — @2l Ly0.70) < C(H“é - U(Q)ng—Z/q(G) + I = Pl o)+
]:
HIfy = fillLa@mo) + I1fo = f3llLaqro) + 1G5 — Cg!lwg—zq(g) + 1106 = Ol yy2-2/0y T
165 = Bl sy + 198 = Bl sy + 35 10F = V2o
Consider a linearized statement. We consider the system (16) — (18), where
BOabjab()uajaBjabjaeLq(Q)7 j:1727"'7n' (29>

Theorem 4. Assume that T € C?, p > n+ 2, the problems (3), (6) and (2), (5) satisfy
the (PL) condition, and the conditions (20) — (29) hold. Then there exists a unique solution
(u,p,©,C, q1,...,q.) to the problem (16) — (18), (4) — (7), (9) from the class

u € Wf’l(Q), p € L,(0,T; W;(G)), ¢ €Ly Q), j=1,2,...,r

A solution satisfies the estimate
Iz + 1O + €0z 1)+ 35 Wsllsgom < (Mol -y + W lser

ol o@ + 1 follLa@) + Collyy2-2a () + [1Oollyy2-2r0 () +

+Hg2HW€{1*1/2q!2*1/‘1(5) + Hg3HW;Oa250(5) + ; Hw’LHW(}(O,T)>

3. Inverse Problems for Parabolic Systems

In this section, we examine parabolic equations and systems of the form

up+ Alt,z, Dyu = bi(t,2)g(t, )+ f, (tz) €Q, == (a,2"), (30)
i=1
where o' = (21,29, ...,21), @ = (Tpy1, Thro,- -, Tn), bi, © = 1,2,... 7, and f are given

vector-functions and A is a matrix elliptic operator of order 2m with matrix coefficients
of dimension A x h representable as

70

A(t,z,D) = > qilt, ) Ay(t,x, D,) + Ayoa(t, 2, D), (31)
i=r+1
A; = Z aio(t,x)D*, i=r+1,...,r0+1, 1o =5sh, D = (0z,009,.-.,0z,). (32)
|| <2m
The unknowns in (30) are a solution u and functions ¢(t,2'), ¢ = 1,2,...,

ro occurring in the right-hand side (30) and the operator A as well; in the latter case
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they are coefficients. The equation (30) is complemented with the initial and boundary
conditions

u|,_, = uo, B; u}s Z bjs(t,x Dﬁu}s ;(t, ), (33)
|B|<m;
where m; < 2m, j =1,2,...,m. Let I' € C*™. The overdetermination conditions have the
form
uls, = Yi(t,x), 1=1,2,...,s. (34)

The results exposed in this section can be found in author’s articles [18-21,44|. The
condition on the data are written as follows.

30(t,2) € W)™HQ), p>n+2m: @|_ =uo(z), BP|lg=g,l=1...,m,
0n,® € W™ H(Qs), ®|g = ty(t.2") € C((0,T];C*"(Q)), v € C(Qo),
feL,(Q), Ouf € Ly(Qs), f}S €C(Qo), i>k+1, j=1,...,s (35
As a consequence of the conditions (35) and the embedding theorems, we have
uo(w) € W =0(G), g € Wimb(8), Bjuolr = g5(0, @), (36)
where k; = (2m —m; —1/p)/(2m) and j =1,2,...,m,
Op,g5 € WK1 (S5), Opiug(x) € W™ 2MP(Gy), j=1,2,...,m, i=k+1,...,n, (37)

where S5 = (0Gs NT') x (0,T"). The conditions on the coefficients of the operators A, B,
are more or less conventional. For simplicity, we will use the conditions that are not sharp.
We assume that

@ia(t,2) € Loo(Q) (Ja| <2m), aia € C(Q) (lo| =2m), i=r+1,...,r0+1, (38)

bjs € C2"mil=5k(§), 8,.b;5 € C¥ T (5y), 8] <myj=1,...,m, i >k (39)

Op,0ja(t, ) € Loo(Qs), o] <2m, j=r+1,...,10+1, i >k, (40)

bi(t,z) € L,(Q), 0,00 € L,(Qs), (I=1,...,r, 1> k). (41)

We look for the functions ¢; in the class of continuous functions. Hence, we require that
aio (t, 2, ¢ (), bi(t, 2, ¢ () € C(Qo) (42)

foralll=1,...,r,7=1,2,...,s, and |a| < 2m.
Now we introduce the matrix B(t,z’) of dimension sh x sh whose rows with
the numbers from (5 — 1)h + 1 to jh are occupied by the column vectors

( - bl(t, .CI?), —bg(t, .CI?), ey —br(t, .CI?), Ar+1(b(t, 33'), ceey Ashq)(t, .CI?))

z/ =3 (')

It can be shown with the use of the embedding theorems and the conditions (35), (36),
(42) that the elements of this matrix are continuous on G. We require also that there
exists a constant dy > 0 such that

| det B(t,2')| > 6y Vo' €Q, t€0,T]. (43)
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Consider the system of equations

B(ta x/)io = ga g‘o = (q?a qga cee 7QSh)7 (44>

where § is the column vector whose coordinates with the numbers from (j — 1)h + 1 to jh
are the vector

f(t, x, goj(x')) — Ash+1¢>(t, x, cpj(x’)) — ®, (t, x, goj(x')). (45)

Under the condition (43) the system (44) has a unique solution ¢° = (¢?,...,4¢%) =

(B(t, x/))_lg(t, 2'). The above conditions for the data ensure that ¢° € C'(Qo ). Consider
the operator

sh
Ao(t7 Z, D) = Z qzo(ta x/)Ai(ta T, Dx) + Aherl(ta T, Dx)a
i=r+1
and the problem
u+ Ao(t,z, Dy)u=yg ((t,z) € Q), u’tzo = ug(z), Bju}s =g;. (46)

7

Fix i € {1,2,...,s} and make the change of the variables 3y = 2/, v" = 2" — ©'(2’),
t = t in the domain (Qs,;, with 0; < d. After this change, the operators A and B;
are transformed into some operators Ai(t, y,D,) and Bj» (t,y, D,). Denote by A;, and B;-y,
the parts of the operators A’ and B; not containing the derivatives with respect to
the variables yii1,Yr+2,...,yn and by A, and B}, the remainders. Similar sense has
the notations A,/, By, Ayr, Bjyr, and Agy, Agyr. Describe the connections between
the derivatives with respect to the new and old variables. We have

a:tj - 3yj o Z ‘Pviﬂyj(y/)ayra J <k, axj - ayj’ j >k

r=k+1

Oy; = O, + Z ‘Pixj(x/)a:cm J<k, 0y =0y, j>F
r=k+1

Thus, we infer
Ay (ty, Dy) = Au (6,9, y" + €' (V) Dy), B, (t,y,Dy) = Bjw(t,y',y" +¢'(y), Dy).

As is easily seen, the operators A, and preserve their form. Consider the auxiliary
problems

U+ AL (69,0, D)7 =0, (t,y) € Qu, (47)
w](()’y/) :()7 j:1727"'787 (48>
Bg’y/w%:o, j=1,2,...,s, i=1,2,...,m. (49)

Theorem 5. Assume that the condition (A), where 9Q € C?™ and the conditions
(35), (38) — (43) are fulfilled and the problem (46) satisfies the condition (PL). If
ny,,(t,y’,O,Dy) =0 foralli=1,2,....,m and j = 1,2,...,s then there exists a number
10 € (0,T] such that there exists a unique solution (u, qq, - .., qsy) to the problem (30), (33),
(34) of the class

uwe WX Q™) : Vyru € W™HQE) Vo3 <6, ¢;€C(QF), j=1,2,...,sh.
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Proceed with the linear case. Assume that all coefficients of the operator A are known

functions, ie., r = sh, A = > au(t,x)D%, and all unknown functions ¢; enter
la|<2m

the right-hand side of (30). All conditions for the data have the same form. In particular,

we assume in the next theorem that the problem w;, + Au = f, u(0,z) = uy, Bjuls = gj,

j = 1,...,m satisfies the confition (PL). In our case the rows of the matrix B(t,z’) of
dimension sh x sh with the numbers from (j — 1)h+ 1 to jh are occupied by the column
vectors ( — by (t, 2,7 (")), —=bs(t, 2,7 (2')), ..., =b.(t,2',¢7(2")). The conditions (35),

(41) can be rewritten as follows:

30(t,2) € W™NQ) (p>n+2m): ®|,_, =u(x), BP|g=g, [=1,...,m,
00, ® € W Q). f € Ly(Q), uf € Ly(Qs), 2 k+1, (50)

bl(t,l‘) c LOO(Q), 8xzbl S Loo(Qg), l=1,...,r, 1> k+1. (51)

Let W, be the class of vector-functions ¢ = (%42 ..., ¢°) € W™ (Qo) whose
coordinates meet (47), (48) and there exists a function @ satisfying (50), with ug =0, ¢9; =
0(j=1,...,m), such that B (t, 2/, ¢’ (z'), DI/)W’&) = By (t, 2/, cpj(x’),Dx/)CD}So, where
i=1,2,....,m,7=1,...,s. We say that the equalities (34) are fulfilled in a generalized
sense whenever there exists a vector-function 1; = (Y1, % ... %) € ¥y such that

u’Si =it )+t 2, () €Qy, i=1,2,...,s. (52)

The fulfillment of the equality (34) in a generalized sense means that it is fulfilled in
the quotient space (Wme’l(Qo))s /Wo, where W>™1(Qo) is a space of vector-functions ¢ €
W2m1(Qo) of length h.

Theorem 6. Assume that the condition (A), where 92 € C*™, and the conditions (38) —
—(40), (43), (50), (51) are fulfilled. Fix 6; < 6. Then the following statements are valid.

1. There exists a constant ¢ > 0 such that a solution (u,q, . .., q,) to the problem (30)
— (34) from the class

ue W2 Q) : Voru € W2HQs,) Vo2 <6, q; € Ly(Qo), j=1,2,...,sh
meets the estimate

lllyyzma gy + IVartllyzmag, ) + > Iaillzu@o <
j=1

< c[[@flwzma gy + IVar®llwzmiign + 1 fllzp@ + IVar fllLp@n)- - (53)

2. There exists a unique solution (u,qy,...,q,) to the problem (30) — (34), where (34)
1s understood in the generalized sense, from the class

u e W;m’l(Q), Ve € W;m’l(Q51> Vo, < 6, q; € LP(Q(])? 7=12 ... "

3. Solutions (u,q, ..., qy) to the problem (30) — (34), with ug =0, f =0, g; =0 and
= (1,09, ...,10) € Uy, from the class

u € W;m’l(Q) :Varu € W;m’l(le) Vo, < 6,

do not exist whenever ¢ # 0.
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4. Ifoy,,(t,y’,O,Dy) =0 foralli=1,2,...,mand j =1,2,...,s then ¥o={0} and
there exists a unique solution (u,qy,...,qs) to the problem (30) — (34), where the equality
(34) is understood in the usual sense from the class

u e W;m’l(Q) : Venu € Wme’l(Q(;l) Vo, < 6, q; € Lp(QO)7 17=12...,r

Remark 1. We note that the function ¢; are sought in the space L,(Q) in the previous
theorem. However, the results are valid if a solution is sought in the class indicated in
Theorem 5. The conditions on the data and the coefficients in this case coincide with
those of Theorem 5 (see [19]).

Remark 2. Note that the above theorems are valid in the case of the pointwise
overdetermination as well, i.e., & = 0. The condition (A) in this case is reduced to the
following conditions: the points {x;}{_, are interior points of G. Moreover, in this case
we can replace the conditions (35) with the more natural conditions (36), (37) and the
consistency condition uglg, = ¥;(0,2'), [ =1,...,s.

Remark 3. If the condition (43) fails then very often the problem becomes ill-posed in
the Hadamard sense. In this case the problem becomes unsolvable if the data have finite
smoothness. The corresponding example can be found in |7, Example 3|. The condition
of additional smoothness of the data in some neighborhood G5 about the set, where the
overdetermination data are imposed (see conditions (35), (37), (41), (40), etc.) also cannot
be omitted. For example, in the condition (35) we require that V. f € L,(Qs)). In the case
of the pointwise overdetermination this condition can be written as f € L, (0,7 W, (Gs))
(G5 is a neighborhood of the set {z;} of the overdetermination points). We can replace this
condition with the condition f € L,(0,T; W;(Gs)) with s > n/p (see [31]). But if s <n/p
we can construct ill-posedness examples again. In the general case of £ > 0 additional
smoothness in the variables 2” can be characterized by the number s > (n — k)/p.

Next, we present an analog of Theorem 3 in the case of a higher order parabolic system.
The results are published in [44,73,74]. We consider the problem (30), (33), where the
operator A admits the representation (31). We slightly refine some of the statements in
these articles. We assume that

1 1
@i € Ly(G), suppy; C G; C G, 0G; C C', ¢, e W, (Gy), i=1,...,10, —+— =1, (54)
feLy,Q), p>n+2m, bj(x,t) € Loo(0,T; L,(G)), i =1,2,...,r, (55)

Wi(t) € W, [0, 77, ¢i(0) = /(UO(x)v(Pi(x))dxv i=1,2,...,70, (56)

G;

tia € C(Q), |o] = 2m, aia € Ly(Q), |a| < 2m, bjs € C*™ ™= (S), (57

where j =1,...,m, |B| <m;. Let Gy = Ul_,G; and assume that
b, f € C([0,T]; Ly(Go)) (j =1,2,...,7), aia € C([0,T),W,(Gp)) for |a| =2m, (58)

aio € C([0,T],Ly(Go)), i=r+1,r+2,...,rg+1 for |a] < 2m. (59)
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Define the matrix B of dimension rg X ry with the rows

/(bl(O,x),gak) iz, .. /(bT(O,x), or) d,

G G

- /(AT+1(07 QU)UO, @kz) dl‘; ceey T /(ATO(O, ZE)U(), (,Ok) dx.

G G

We require that
det B # 0. (60)

Determine the constants ¢, i = 1,2, ...,y as solutions to the system

o
%’t(o) + 2 Q? f(Aina 90]') dx + f(ATOJrlan @j) dr =
2.

e (61)
= Z q? f(bi(oa :E), 90]') dr + f(f7 90]’) dx,
=1 G a
70
where 7 = 1,2,...,79, and construct the operator Ay = > ¢A; + A.41. Our

i=r+1
overdetermination conditions take the form

/(u,gai(:z:))dx:wi(t), P= 12 (62)

G

Theorem 7. Assume that the conditions (36), (54) — (60) hold and the problem (46)
satisfies the condition (PL) with the above-defined operator Ay. Then there exists a number
10 < T such that on the segment [0, 79| there exists a unique solution (u,qi, .., qy,) to the

problem (30), (33), (62) such that
u € W;m,l(QTO)a qz(t) € C([OaTOD, 2 - 1, 2, ...,7“0.

In the linear case, we can weaken our conditions on the coefficients. In this case all

coefficients of the operator A = Ap = > a,D" are known functions and the unknowns
|a|<2m

¢; enter the right-hand side of (30). We require that

¢j € Ly(GQ), supp ¢; CG; C G, 1/p+1/g=1,0; € W;°(Gj), 0 > 0,

aq € C(Q), aq € Loo(0,T,C°°(G))), la|=2m, j=1,...,r, (63)
to € L(Q) (Ja] < 2m), bjz € C*=mil=5 (), |8 <my, j=1,...,m.

The matrix B of dimension r X r has the rows

/(bl((),x),@k) dx,...,/(br((),x),@k) dv, k=1,...,r.

G

The claim of the previous theorem can be reformulated as follows.
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Theorem 8. Assume that the conditions (36), (55), (56), (60), (63) hold and the problem
(46) satisfies the condition (PL) with the above-defined operator Ag. Then there exists a
unique solution (u,qi, .., ¢y, ) to the problem (30), (33), (62) such that

we W2 (Q), ¢(t) € Ly(0,T), i=1,2,...,r.

A solution satisfies the estimate

lyyzmaoy + 3 la:®)leqoy <
=1

<c (IIfHL,, £ 395l + Ntolyamzmiy + S rwinwgm) .
j=1 j=1

Remark 4. The results of the above Theorems 1-8 remain valid in the case of unbounded
domains G for which the solvability theorems of the direct problems are valid (the
conditions on the coefficients slightly differ from the above-presented, see those in [83,
Theorem 9.1|, the Theorem 5.7 for G = R™, Theorem 7.11 for G = R in [82]. Note also
that the results in [5-7] employ more general condition rather than the condition (A).

Remark 5. First, we note that the conditions on the lower order coefficients in Theorems
4, 5 can be weakened. It suffices to require that a;, € L,(Q) or a, € L,(Q) rather than
Uio, € Loo(Q) or ay € Loo(Q). Second, we can note that stability estimates for solutions
similar to those in Theorems 1, 2 are also valid in all remaining theorems.
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OB 9BOJIIOIIMOHHBIX OBPATHBIX 3A/TAYAX
JJId MATEMATUYECKIX MO/JIEJIEN TEIIJIOMACCOIIEPEHOCA

C.I'. IIamxos, KOropckuii rocyqapCcTBeHHBI YHUBEPCUTET, I. XaHThI-MaHCHIiCK,
Poccuiickas Peepartiust

[IpeacraBiieHbl pe3ysIbTaThl O KOPPEKTHOCTH OOPATHBIX 3aJ1a9 JJIs MATEMATHIECKUX
MOJIeJIell TeIIoMaccoepeHoca. Hem3BeCTHBIMU SIBJSIIOTCS IIpaBasi 9acTh B yPaBHEHUH
(byukims ucTOYHUKOB) U KOI(DMUIMEHTHI ypaBHEHUA. YCJIOBUS IIE€PEOLPEIEICHUT —
3HAYEHUS PENIeHUs Ha HEKOTOPBIX MHOI000Opa3uaX MU B OTIEIbHBIX TOUKaxX. Paccmarpusa-
I0TCs IBa KJIacca MaTeMaTndeckKux Mojeseil. [lepsas Bkiouaer cucreMmy ypasuenuii Hasbe
— Crokca, JONOJHEHHYIO TapabOJHIeCKUM ypaBHEHUEM JIJIs TEMIIEPATYPHI U Hapadosmde-
CKOM crcTeMoil /1 KoHIeHTpamnuii mpumeceii. I[IpaBas 9acTh HEM3BECTHA W XapaKTEPU3yeT
00'bEMHYIO IIOTHOCTH UCTOYHUKOB B KUJIKOCTH. Hen3BecTHbie (DYHKINEN 3aBUCAT OT BpEMe-
HU U 9aCTU TPOCTPAHCTBEHHBIX IEPEMEHHBIX U BXOJAT B IIPABYIO 4aCcTh ypaBHeHus. Bropoii
KJIACC CUCTeM — rapabosindecKasi CHCTeMa YPABHEHUN ypaBHEHU Jjis KOHIIEHTpAIUii TIepe-
HOCHMBIX BEIECTB, TJie¢ HEM3BECTHBIE BXOJAT KAK B MPABYIO 9aCcTh TaK W CAMy CHCTEMY B
kadecTBe K03 durmentos. [Tokazamna KOPPEKTHOCTD STUX 3a/a4, B YaCTHOCTHU MOJIy YeHHBIE
TEOPEMBI CyIIEeCTBOBAHMUS, €IMHCTBEHHOCTH W OIEHKHU YCTOWIUBOCTH Jjist pernenuii. Jlasee,
MBI OIIMIIEM HEKOTOPbIE ajJrOPUTMBI PEIeHrusi 0OpPATHBIX 3aa4 O BOCCTAHOBJIEHUU TOYEY-
HBIX MCTOYHUKOB II0 TOYEYHBIM JAHHBIM IEPEOINpEIesIeHUsI, OCHOBAHHbIE Ha ACUMIITOTUKE
pemenuit dpyukiwmit ['prHa cOOTBETCTBYIONMUX SJTUITHICCKUX 3a0a4.

Karouesvie caosa: obpamuas 3adava; mensomaccoobmen; duavmpayus; ouddysus;

KOPPEKMHOCTD.
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