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The work is devoted to the study the stochastic analogue of the Hoff equation, which
is a model of the deviation of an I-beam from the equilibrium position. The stability of the
model is shown for some values of the parameters of this model. In the study, the model
is considered as a stochastic semilinear Sobolev type equation. The obtained results are
transferred to the Hoff equation, considered in specially constructed “noise” spaces. It is
proved that, in the vicinity of the zero point, there exist finite-dimensional unstable and
infinite-dimensional stable invariant manifolds of the Hoff equation with positive values of
parameters characterizing the properties of the beam material and the load on the beam.

Keywords: the Nelson—Gliklikh derivative; stochastic Sobolev type equations; invariant
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Introduction
The Hoff model
(A + At = au + Bu?, (1)
u(z,0) = ug, u€ X, u(t,0)=0,(x,t) € 0L xR (2)

is a model of buckling of an I-beam from the equilibrium position. Here ¥ C R" is a
bounded domain with a smooth boundary 0%, the parameter A € R, is the parameter
responsible for the load applied to the beam and «, g € R are the parameters responsible
for the material from which the beam is made. The paper [1] considers the set of valid
initial data of problem (1), (2) understood as a phase space. Here equation (1) was reduced
to the semilinear Sobolev type equation

Li= Mu+ N(u), (3)

where L, M, N : 4 — § are the operators and 4, § are Banach spaces selected in
a special way. In [2], the proof of smoothness and simplicity of the phase space of the
equation for positive values of the parameters o and [ is considered. The stability of
solutions to equation (1) in a neighborhood of the zero point is described in [3], which
shows the existence of stable and unstable invariant manifolds.

The purpose of this paper is to study the stability of the stochastic analogue of equation
(1). We consider the Hoff equation as a special case of the stochastic semilinear Sobolev
type equation

L= Mn + N(n). (4)

Here, 7% denotes the Nelson—Gliklikh derivative [4]. Currently, a large number of papers
are devoted to the problem on the solvability of a linear (N = Q) equation of the form

24 Bulletin of the South Ural StateUniversity. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2021, vol. 14, no. 4, pp. 24-35



MATEMATNYECKOE MOJAEJIMPOBAHINE

(4). Let us note only some of them. The paper [5] considers the existence of solutions to
the Cauchy problem

Jim (5(t) — ) = 0. (5)
—0+
the Showalter—Sidorov problem

P(n(0) —m) =0 (6)

for linear equation (4) (N = Q) in the case of the (L, p)-bounded operator M, p € {0} |JN.
Investigation of problems (5), (6) for equation (4) if N = O in the case of the relative
sectorial operator M is presented in [6], and in the case of the relative radial operator M
is considered in |7].

The paper [8] considers the study of the nonlinear stochastic Sobolev type equation

L 1= N(n). (7)

The paper establishes the conditions for the existence of solutions to equation (7). In our
study, the question of the stability of a semilinear equation of the form (7) is solved. In
the linear case (N = Q), the existence of stable and unstable invariant spaces was shown
in [9]. This work is a continuation of [8,9] on the study of local stability of a semilinear
stochastic equation.

The paper is organized as follows. Section 1 contains some concepts and statements on
the theory of stability of Sobolev type equations. In Section 2, we describe differential forms
with coefficients from a specially selected ‘“noises” spaces obtained by Nelson-Gliklikh
derivative. In this sections, we research the exponential dichotomy of linear Sobolev type
equations and invariant manifolds of semilinear Sobolev type equations. In Section 3, we
present an example for the stochastic analogue of the Hoff equation.

1. Invariant Manifolds of Sobolev Type Equations

Let 4 and § be Banach spaces, L, M € L(4;F) be operators. The set pl'(M) =
{peC:(uL — M)t € L(F;U)} is called the L-resolvent set and the set o(M) = C\
pE(M) is called the L-spectrum of the operator M. The operator M is called the (L, o)-
bounded operator, if o¥(M) is bounded.

Let M be a (L,o0)-bounded operator. Then there exist a splitting of the spaces
U0 (L) = ker P (imP), F° (FY) = kerQ (imQ), the operators Lj (M) € L(U*;F)
(k =0,1), and the operators M, " € L(F%4U°) and L' € L(F';U) (see, for example, [10]).
Here

P=t [(uL— M) Ldp e £, Q

o

_ _ —1
= /L(uL M) Ydp € L(3)
Y ol

are projectors, and the closed contour v C C bounds a domain containing o*(M). Consider
the operators H = Ly My € L(4°) and S = Ly'M,; € L(4'). If the operator M is (L, o)-
bounded operator and H = Q, p = 0 or H? # O, HP™ = O, then the operator M is
called (L, p)-bounded operator.
The vector function u € C*((—7,7);U), k € NU {oo} satisfying equation (3) for some
T € R, is called a solution to this equation. The solution u = u(t) to equation (3) is called
a solution to the Cauchy problem
u(0) = uyg (8)

for equation (3), if equality (8) is satisfied for some ug € 4L
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Definition 1. The set B € L is called the phase space of equation (3) if

(i) any solution u = u(t) to equation (3) belongs to B, i.e. u(t) € P for every t €
(_Tv T);

(i) for any ug € B, there exists a unique solution u € C*((—7,7); ), k € NU {oo}
to Cauchy problem (8) for equation (3).

Cauchy problem (8) for equation (3) can be either unsolvable in general, or solvable,
but not uniquely, even in the case when oo is a pole of the order p € {0} UN of the L-
resolvent of the operator M. Starting from the paper [1], in order to study the solvability of
Cauchy problem (8) for equation (3), it is proposed to limit to quasi-stationary trajectories,
i.e. such solutions to equation (3) for which H4"(t) = Q. These solutions belong to the set

M={ueil: I-Q)(Mu+ N(u))=0}.

Note that if the operator N = O, then the set 0t = 4!

Let u € M. The set M is called the Cl-manifold at the point w, if there exist
neighborhoods O C 9t and O C U of the points u € MM and u' = Pu € U, respectively,
and the C'-diffeomorphism D : O' — O such that D~! is a restriction of the projector P
by M, I € NU {oo}. The pair (D, O) is called a map of the set 9. The set M is called a
Banach C'-manifold if it is such at each of its points. A connected Banach C'-manifold is
called a simple manifold, if any of its atlases is equivalent to an atlas containing a single
map.

Theorem 1. [1| Let M be a (L,p)-bounded operator, p € {0} UN, the operator N €
Ck(U,F), and the set M be a simple Banach C'-manifold at the point ug. Then, for some
T € Ry, there exists a unique solution uw € C™((—7,7); M), m = min{k,l}, to equation
(3) passing through the point uy.

Remark 1. If the operator N = O, then the set 9t = ! and the phase space of the
equation

Li= Mu 9)
is a subspace of U!.

Definition 2. If, for any solution uy € J C U to problem (9), (8) is u € C(R;7), then
the space J is called an invariant space of equation (9).

Remark 2. For the existence of invariant spaces, it is sufficient to fulfill the condition

M)YUok(M), of(M)+# 0,
EM;Lst a ilos)ed set.( ) } (10)

ot (M) = of
of
Remark 3. Any invariant space J of the equation (7) is a subspace of its phase space.

Definition 3. If there exist constants Ny), vi2) € Ry and

lu! () [lg < Nie™CONul(s)ly for s>t (u' €T
(lu?(@®)lly < Noe™2CIu(s)ly for t>s (u? €37)),

then invariant space 377 C P is called a stable (unstable) invariant space of equation
(9).
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Remark 4. (i) If 37 =P (- =P), then we talk about the stability (unstability) of the
stationary solution to equation (9).
(ii) If P = JTPJ~, then there exists an exponential dichotomy of solutions to equation

(9).

Let the following condition be fulfilled:

oL (M) = oL (M) o™ (M) and

ot (M) ={p € (M) : Rep > ()0}, ok (M) # @ } : (11)

Then we can construct the projectors

1 1
Py =5— | Ri{(M)dp, Quy = 5= [ Ly(M)d
Ur) 270 R;L( ) 2 Ql( ) 27i ;L( ) 22
Vi(r) Ni(r)
where the contour 7,y belongs to the left (right) half-plane and bounds the domain
containing the part of the L-spectrum of the operator M which belongs to this half-plane.

Theorem 2. [4] Let M be the (L, p)-bounded operator and condition (11) be fulfilled. Then
there exist the stable 3© = imP, and unstable 3~ = imP, invariant spaces of equation (9).

Definition 4. The set
mr) = {uo € || Pmyuollg < Ra, Jult, wo)lly < Rey t € Ry}

is such that

(i) M+ is diffeomorphic to a closed ball in 3+();

(i3) M+ touches I+) at the zero point;

(iii) for any ug € M) and for t — +(—)oo, ||u(t,uo)|ly — 0 is called a stable
(unstable) invariant manifold of equation (3).

Here u(t, ug) is a quasi-stationary trajectory of equation (3) passing through the point
Ug € .

Theorem 3. [3| Let M be the (L,p)-bounded operator, p € {0} UN, condition (11)
be fulfilled, and the operator N € C*°(U,F) be such that N(0) = 0, N) = O. Then for
some R;, j = 1,2 there exist the stable and unstable invariant manifolds of equation (3).
Moreover, if for some uy € M, there exist |Pyuolly < Ri and ||u(t,uo)|ly < Ry for
t — +(—)oo, then uy € M),

2. Stable and Unstable Invariant Manifolds in “Noise” Spaces

Let 2 = (Q, A, P) be a complete probability space and Lg be a set of random variables
¢ : Q2 — R, whose mathematical expectation is zero (E{ = 0) and the variance (D)
is finite. In Ly, we define the scalar product (£1,&) = E&&. Denote by LY C Ly the
subspace of random variables measurable with respect to Ag, where A is a o-subalgebra
of the o-algebra A. The orthoprojector IT : Ly — L is called a conditional mathematical
expectation and is denoted by E(&|Ay).

The mapping n : R x Q — R is called a stochastic process. If we fix t € J C R, then
the stochastic process n = n(t, -) is a random variable. If we fix w € €, then the stochastic
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process 1 = n(-,w) is called a trajectory. If almost certainly all the trajectories of the
stochastic process 1 are continuous (i.e. for almost all w € € the trajectories of n(-,w) are
continuous), then 7 is called a continuous process. Denote by CLy the set of continuous
process. Fix n € CLy and t € 7, and denote by V" the o-algebra generated by a random
variable n(t) and E] = E(-|N,").

Definition 5. [4] Let n € CLy. If there exists the limit

707:1( lim E?(n(tJrAt,-)—n(t,-))Jr - E?(n(t,-)—n(t—ﬁtw)))’

2 \ At=o0+ At A0+ At

then% 15 called the Nelson—Gliklikh derivative of the stochastic process n at the pointt € J.

Denote by C'Ls, I € N the space of stochastic processes whose trajectories are almost
certainly differentiable by Nelson-Gliklikh on the interval J up to the order [ inclusively.
The spaces C'Ly are called the spaces of differentiable “noises”.

Let U (§) be a real separable Hilbert space with a basis {¢x} ({1x}) orthonormal with
respect to the scalar product < -,- >¢ (< -, >z). Choose the sequence K = {\;} C R

such that > A2 < oo, and the sequence {{;} C La ({¢x} C L) of uniformly bounded
k=1

random variables. Next, we construct the random K-value

E= Mbipr (C => )\ka%) :
k=1 s

The completion of the linear shell with the random K-values according to the norm

1€lRr, = > AiD& (HCH%KLZ => AiDck)
k=1 k=1

is a Hilbert space, which we denote by UkgLs (FxLs) and call the space of random K-
values.
The stochastic process 1 : (¢,7) — UkLy is defined by the formula

n(t) = Mbilt)er, (12)

where {&.} is some sequence from CLy and J = (¢,7) C R, which is called a stochastic
continuous K-process, if the number on the right side converges uniformly on any compact
set in J with the norm ||-||ugr,, and the trajectory of the process n = n(t) is almost surely
continuous. A continuous stochastic K-process n = n(t) is called a process continuously

differentiable by Nelson—Gliklikh on [J, if the series

N(t) =Y e & ()pr (13)
k=1
converges on any compact in J according to the norm || - ||y and the trajectories of

the process =" (t) are almost certainly continuous. The symbol C(J, UkLy) denotes the
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space of continuous stochastic K-processes and the symbol C!(7, UkLy) denotes the space
of the stochastic K-processes continuously differentiable up to the order [ € N. Examples
of the vector space C'Ly and the stochastic K-process continuously differentiable up to
any order [ € N are given by the stochastic process describing Brownian motion in the
Einstein—Smolukhovsky model

B(t) = i £, sin g(% + 1)t
k=0

where &, € Ly, D&, = [5(2k+1)]7%, k € {0} UN, g (t) = %,t € R, and the Wiener’s
K-process

WL(E) = > MeBe(t)or,

where {8} C C'Ly is a sequence of Brownian motion on R, [4,5].
The following lemma gives the opportunity to transfer all the considerations of Section
1 to the spaces of the random K-values.

Lemma 1. The operator A : 4 — § is a linear and continuous operator (A € L(;F))

if and only if the same operator A : ULy — FxLs is a linear and continuous operator

Remark 5. Let of(M) be the L-spectrum of the operator M, where the operators
L, M : 4 — F, and ol (M) be the L-operator spectrum of the operator M, where the
operators L, M : ULy — FxgLy. Then of (M) = ok (M).

Assume that the operators L, M € L(UgkLy; FgLy), consider the equation
L= Mn+ N(). (14)

Let J = {0} UR,. A stochastic K-process n € C'(J;UkLy) is called a solution to
equation (14), if all its trajectories satisfy equation (14) for all t € J. A solution n = n(t)
to equation (14) is called a solution to the Cauchy problem

lim (1) ~ ) = 0, (15)

t—

if equality (15) holds for some random K-value 79 € UkLs,.

Definition 6. The set PxLy C UkLs is called a stochastic phase space of equation (14),
if

(i) probably almost every solution path n = n(t) of equation (14) belongs to PxLs, i.e.
n(t) € PxLo,t € R, for almost all trajectories;

(i) for almost all ny € Pk Ly, there exists a solution to problem (14), (15).

Let M be the (L, p)-bounded operator. Then we can extend the projector P considered
in Section 1 from the Banach space il to the space of the random K-values UgL,. If
condition (11) is satisfied, then we extend the projectors P, and P, by UgLs. Denote
Ui L, = imP, UL Ly, = imP, and UiL, = imP,. Along with semilinear equation (14), we
consider the linear equation

L 7= My (16)
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with the initial condition
n(0) = no. (17)

Theorem 4. Let the operators L, M € L(UxkLs;FkLs) and M be the (L,p)-bounded
operator. Then the phase space of equation (16) is the space Ui Ls.

Remark 6. Under the conditions of Theorem 4, if there exists an operator L=! €
ﬁ(FKLQ, UKL2>7 then U%(LQ = UKL2

Definition 7. The subspace IxLy C ULy is called the invariant space of equation (16),
if, for any no € IxLy, solution to problem (16), (17) n € C'(R; IxLs).

Remark 7. If equation (16) has a phase space PxLy and an invariant space IxLo, then
IxL, C PkLs.

Definition 8. Solutions n = n(t) of equation (16) have an exponential dichotomy if

(i) the phase space PxLy of equation (16) splits into a direct sum of two invariant
spaces (i.e. Pl = IjtLy & IxLsy);

(ii) there exist constants N € Ry, vy € Ry, k= 1,2 such that

1" (1) lugr, < Nlef'jl(s*t)||771(8)“UKL2 for s >t,
177 () lokre < Noe 29 (s) |ugr,  fort >s,

where ' = n'(t) € ItLy and n? = n?(t) € IxLy for all t € R. The space IjitLy (IgLy) is
called the stable (unstable) invariant space of equation (16).

Theorem 5. (9] Let M be the (L,p)-bounded operator and condition (11) be fulfilled.
Then the solutions of equation (16) have an exponential dichotomy and the spaces Ul Loy
and UKy are stable and unstable invariant spaces of equation (16).

Next, we arrive at questions about the solvability and stability of stochastic semilinear
equation (3). If, for some fixed w € €, there exists a solution n = 7(t) to equation (14),
then 7 belongs to the set

ML :{ {n € UxLy : (I-Q)(Mn+ N(n)) = 0}, if ker L # {0};
K2 UxkLs,, if ker L = {0},

and the following theorem is true.

Theorem 6. [8] Let M be the (L,p)-bounded operator, the operator N €
C’l(UKLg,FKLQ), and the set MgLy be a simple Banach C'-manifold at the point
no € UkLy. Then the set MLy is the phase space of equation (14).

Definition 9. The set

M; Ly = {10 € ULy : || Py ol e < Ru, 100t 10) g < R, t € Ry}

is such that

(i) Mﬂ(f)Lg is diffeomorphic to a closed ball in IJIg(f)Lg;

(i1) ME(_)LQ concerns I;;(_)LQ at the zero point;

(iii) for any ny € M;’—:(_)LQ; for t — +(=)oo, |[n(t,no)llugL, — 0 is called a stable
(unstable) invariant manifold of equation (14).
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From Lemma 1 and Theorem 3 we obtain the following result.

Theorem 7. Let M be the (L,p)-bounded operator, condition (11) be fulfilled, and the
operator N € CF(U,F) be such that N(0) = 0, N = Q. Then there exist stable and
unstable invariant manifolds of equation (14) in the neighborhood of the zero point.

3. Hoff Stochastic Equation

ol

Consider the stochastic analogue of equation (1). Let U = W,, § = Wy * (functional
spaces are defined on the domain ). The space 4l is a real separable Hilbert space densely
and continuously nested in §. In the space U, basis is orthonormal in the sense of i of
consecutive eigenfunctions {¢y} of the Laplace operator A corresponding to {vy}. Here
{vr} is a sequence of eigenvalues of the Laplace operator numbered in nondecreasing
order taking into account multiplicity. By analogy with Section 2, we construct the spaces
of the random K-values UkL,, FxLs and the spaces of differentiable "noise" C!'UkLs,

o0

[ € {0} UN. Let K = {\¢} be a sequence such that Y A\? < +oco. For example (see [5]),
k=1

as K = {\;}, we can choose a sequence of eigenvalues of the Green operator \y = |vg|™"
o0

(here m € N is chosen in such a way that the series »_ |vx|™™ converges).
k=1

The operators L, M and N are defined by formulas
L:x— (A+A)x, x€UpkLy, M:x — aAx, N:n— Bx®, x € UkLs. (18)

Then the stochastic analogue of Hoff equation (1) is represented as the equation
L X= Mx + N(x). (19)

Lemma 2. For any A € R, and o, § € R\ {0},
(i) the operators L, M € L(UkLsy; FxLy);
(1) the operator M is (L,0)-bounded operator;
(ii1) the operator N € C*(UgkLsy; UgLy), N(0) =0 and Nj = O.

Proof. (i) According to Lemma 1, the operators L, M € £(UgLs; FxLs).
(ii) The L-spectrum of the operator M has the form

(67
)\—i-l/k

ol(M) = {sz = . Vg —)\} : (20)

therefore it is bounded. The kernel of the operator L has the form
ker L = span{yp; : v = —A}.
If ¥ € ker L\ {0} then

b= awp, Y lal>0
==\

yi=—A
and
My =« Z ayp; ¢ imL.
==\
Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 31

u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2020. T. 14, Ne 4. C. 24-35



0.G. Kitaeva

(iii) Let x € UkLy. Then the Frechet derivatives N,, N”, of the operator N at the
point 7 has the form
. 2 .
Ny o x — 38X, Ny :x — 68x.
All other Frechet derivatives of the operator N at the point u are zero. Obviously, the
operator N(0) = 0 and the Frechet derivative N} = Q.

O
Theorem 8. Let af > 0. Then the phase space of equation (19) is the set

{xeUkLy: > <(I-a-B)x.a>@=0,if —A=u;
MKL2 == 7)\2111
UKLQ, Zf/\ 7& vj.

Proof. The statements of the theorem follow from Lemma 1, Lemma 19, Theorem 6 and
the results of [1].

O
Remark 8. The subspace ULy = {x € UgLs :< X, >=0, -\ =y} is a model of
the manifold MgLs for —\ = v;.

Theorem 9. Let o, B, A € R,.

(i) If X < —uy, then equation (19) has only a stable invariant manifold that coincides
with MKLQ

(ii) If —vy < A, then there exist a finite-dimensional unstable invariant manifold
M;. Ly and an infinite-dimensional stable invariant manifold MgLy of equation (19) in
the neighborhood of the zero point.

Proof. (i) Let A < vy, then the L-spectrum of the operator M has the form

L L o
M) = M) = A< — .
A0 =t = {12 a <
Following Theorem 5, the linear part of equation (19) has only a stable invariant space
that coincides with the subspace UjLs. The existence of an unstable invariant manifold
that coincides with MgLs follows from Theorem 7 and Theorem 8.

(ii) If A > —uy, then the L-spectrum of the operator M consists of two parts o(M) =
oL (M) ok (M), where

aE(M):{ a :)\<—Vk},af(]\/[):{ a :)\>—uk}.

A+ v A+ v

The existence of a stable manifold MLy of equation (19) follows from Theorem 5,
Theorem 7 and Theorem 8. The model of the set Mj; Ly is an infinite-dimensional subspace
I} Ly = span{v;, : —\ < v;}. The finite-dimensional space Ix Ly = span{v; : —v; < A} is a
model of an unstable manifold Mg L,.

a

Conclusion

In the future, following [12-14], it is proposed to conduct numerical experiments on
the study of invariant manifolds of the stochastic analogue of the Hoff model.
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NMHBAPNAHTHBIE MHOT'OOBPA3NA MOAEJIN XOPPA
B IIPOCTPAHCTBAX <IITYMOB>

O.I. Kumaesa, HxHo-¥YpajabcKuil rocy1apCcTBeHHbI YHUBEPCUTET, I. 1eIsi0nHCK,
Poccuiickas ®@enepariust

B namnOil paboTe m3ydaercs CTOXacTUYeCKUl aHajor ypapHeHuss Xodda, KOTOpbIi
SIBJISIETCSL MOJIEJIBIO OTKJIOHEHUs JIBYTABPOBOIl OaJIKM OT IOJI0XKeHusT paBHOBecusi. [lokaza-
HA yCTONYMBOCTH MOJIEJU MPU HEKOTOPBIX 3HAYEHUSIX MMAPAMETPOB JaHHOW Momenu. [lpu
HCCJIEIOBAHUY MOJIEJIb PACCMATPUBAETCS KAK CTOXACTUIECKOE MMOJIyIMHEHOe YpABHEHNE CO-
OOJIEBCKOTO THIIA, [JIe CTOXaCTUIECKUN TPOIECC BHICTYIAET B KAYECTBE UCKOMOU BEJIMIUHBL.
VcTaHOBJIEHBI IOCTATOYHBIE YCJIOBHS CyIeCTBOBAHNS NHBAPUAHTHBIX MHOTIO00pa3mii MOJLy-
JINHEHOTO CTOXACTUIECKOrO ypaBHeHus: co00JIeBCKOTO Tuia. 1lojrydeHHble pe3yibTaThl 1e-
peHeceHbl Ha ypaBHeHne Xodda, paccMaTpuBaeMoro B CIIelUaIbHO IOCTPOEHHBIX IIPOCTPaH-
CTBaxX <IIyMOB». JloKa3aHO, 9TO B OKPECTHOCTU TOYKHU HYJIb CYIIECTBYIOT KOHEIHOMEPHOE
HEYCTOWYNBOEe U HECKOHEYHOMEPHOE YCTOWINBOE WHBAPUAHTHBIE MHOIOOOPA3UsS yPABHEHUS
Xodda mpu MoJI0KUTEIBHBIX 3HAYEHUSIX [IAPAMETPOB, KOTOPhIE OIIPEJIEJISIOT CBOUCTBA Ma~
TepuaJia 6aJIKM U HArPY3Ky Ha OAJIKY.

Karoueswie caosa: npoussodnas Heavcona — Inukauza; cmoracmuveckue ypasHeHUs

€0601€6CK020 muna; uHeaAPUAHMHLE .M,H02006p0,3u.ﬂ.
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