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In the design of iterative learning control (ILC) algorithm for stochastic nonlinear
networked systems, the underlying assumption is differentiability of the system dynamics.
In many cases, in reality, stochastic nonlinear networked systems have non-differentiable
dynamics, but their dynamics functions after discretization by using conventional methods
have global Lipschits’ continuous (GLC) condition. In this paper, we apply an ILC
algorithm for stochastic nonlinear networked systems that have the GLC condition. We
demonstrate that to design the ILC algorithm, differentiability of the system dynamics is not
necessary, and the GLC condition is sufficient for designing the ILC algorithm for stochastic
nonlinear networked systems with non-differentiable dynamics. We investigate the analysis
of convergence and the tracking performance of the proposed update law for stochastic
nonlinear networked systems with GLC condition. We show that there exists no limited
condition for the stochastic data dropout probabilities in the convergence investigation of
the input error. Then, the results are reviewed and confirmed with a numerical example.
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Introduction

The use of human learning and experience in doing tasks and success in them is an
incentive to develop a control method called iterative learning control. People learn by
practicing and repeating a task to perfect it. Due to the nature of ILC, ILC can be used to
improve performance in systems that perform repetitive tasks in a limited amount of time.
ILC is a control method that is designed for amending tracking control performance when a
system is performing a repeating task. The ILC algorithm deals with the reference tracking
control problem, which repeats the desired trajectory in a limited time called trial length.
ILC is applied to many industrial applications, such as injection molding, robotics, rolling
mills, and chemical patch processes, etc. The fundamental idea is to use the tracking error
to update the control input signal in the current trial of ILC, and the aim is to attain better
tracking performance from trial to trial. The main idea of ILC goes back to the article [1],
which is one of the sources of this topic. ILC is extensively studied and researched in theory
and is used in practice as well. The paper [2] is a survey that provides an overview of ILC
research, and the paper [3] categorizes almost all ILC algorithms proposed between 1998
and 2004 from various aspects, such as mathematical formula, application type, and system
type. Stochastic iterative learning control (SILC) is given by iterative learning control
concerning systems with stochastic signals such as random data dropout, measurement
noise, and system noise. Previously, there are many kinds of research on various issues
of ILC, such as robustness, stability, update law design, frequency analysis, and applied
research. The papers [2–7] are survey papers in this area of research. The paper [8] presents
an ILC algorithm with gain adaptation for discrete-time stochastic systems. The algorithm
is based on Kesten,s accelerated stochastic approximation algorithm.
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With the advancement of Internet services, with the help of network techniques and
communication, control systems can be networked to have robustness, high performance,
flexibility, facility, and low cost. Control systems with these features organize network
control systems (NCSs). In NCSs, the network locates between the controller and the
system. The goal is efficient performance in case of lost data. Because of the random lost
data, the common control techniques and classical approximation are not used in NCSs.
There are several articles on the employment of the ILC algorithm in NCSs according to the
data conditions, the convergence analysis, and the design of the compensation structure.
The work [9] is a survey concerning ILC with incomplete information and relevant control
systems. In [10], a networked iterative learning control (NILC) is designed for a class of
uncertain discrete-time nonlinear systems with random packet dropout and communication
delay, where the input-output coupling parameter (IOCP) is assumed to be unknown. The
work [11] presents a novel networked iterative learning control scheme with an adjustment
factor for a class of discrete-time uncertain nonlinear systems with stochastic input and
output packet dropout modelled as 0-1 Bernoulli-type random variable.

In the research field of ILC, for nonlinear systems, the following two categories in
terms of system nonlinearities are considered: system dynamic with the GLC condition
and system dynamic with the local Lipschitz continuous (LLC) functions. In [7], the author
designed linear ILC for GLC nonlinear systems and nonlinear ILC for LLC nonlinear
systems.

In practice, many industrial plants have nonlinear systems such that, in many cases,
ILC design requires that the dynamics of the nonlinear systems is differentiable. However,
there exist nonlinear systems, which dynamics are not differentiable. For example, the
work [12] explains that the Hamilton–Jacobi equation is a first-order nonlinear partial
differential equation for the value function, which is differentiable. However, there exist
generally cases such that the value function is not differentiable. In practice, some systems
have non-differentiable dynamics. For example, the dynamics of impulsive systems and
backlash in gears may be non-differentiable. Therefore, this motivated us to design an ILC
algorithm to improve the performance of such systems with non-differentiable dynamics. In
this paper, it is assumed that systems with non-differentiable dynamics have data dropout
and are networked.

We can apply a more relaxed condition for stochastic nonlinear networked systems
such that their dynamic is not differentiable. In this paper, we design an ILC update
law for stochastic nonlinear networked systems such that the system dynamics are not
differentiable, but they have the GLC condition after discretization by using conventional
methods. We determine that to design the ILC update law, differentiability of the system
dynamics is not necessary, while the GLC condition is sufficient to generate the ILC
update law for stochastic nonlinear networked systems with non-differentiable dynamics.
We analyze convergence and the tracking performance of the recommended algorithm for
stochastic nonlinear networked systems that have GLC condition.

The aim of this paper is to show that the non-differentiability of the system dynamics
is not an obstacle for the design of the ILC algorithm and is possible by considering a
more relaxed condition, namely, the GLC condition.
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In the convergence analysis of the ILC algorithm, although the dynamics of the
stochastic nonlinear networked system are not differentiable, there is no problem in proving
the convergence theorem, and the GLC condition is sufficient to prove the convergence of
the ILC algorithm.

Notations. We denote the real number field by R. “P” shows the probability of an
event. “E” indicates mathematical expectation. Superscript “T” indicates the transpose of
a vector or matrix. |.| denotes absolute value. “i.o.” indicates “infinitely often”, “a.s.” shows
“almost surely” and “w.p.1.” denotes “with probability one”. “i.i.d.” stands for “independent
and identically distributed”.

The paper is organized as follows. In Section 2, we formulate the problem statement
and present an ILC update law for stochastic nonlinear networked systems that have the
GLC condition. Section 3 investigates the convergence analysis of the proposed algorithm.
In Section 4, we consider a numerical example, and, in Section 5, we draw a conclusion.

1. Problem Statement

Consider a continuous-time stochastic nonlinear networked system with non-
differentiable dynamics. After discretization by conventional methods such as Euler
method, the system is reduced to the following discrete-time nonlinear networked system
with stochastic measurement noise:

xk(t + 1) = f(t, xk(t)) + g(t, xk(t))uk(t),

yk(t) = C(t)xk(t) + ζk(t),
(1)

where k = 1, 2, ... indicates the iteration index, t = 0, 1, ..., N is the time index, and the
given positive integer N is the iteration length. uk(t) ∈ R, yk(t) ∈ R, and xk(t) ∈ R

n

are the input vector, the output vector, and the state vector, respectively. The stochastic
variable ζk(t) indicates measurement noise. Nonlinear functions f(t, xk(t)), g(t, xk(t)), and
time-varying vector C(t) represent unknown information on the system.

Fig. 1. A control system with a network at
the measurement side

In ILC networked control systems,
the networks are applied to communicate
between the iterative learning controller
and the operational system. We use the
Bernoulli random variables to denote the
lost data in this paper, similar to some
literature about NCSs. We use αk(t) with
the Bernoulli distribution for modelling
the transmission of yk(t). Therefore, if
yk(t) is not successfully transmitted, then
αk(t) = 0, and if yk(t) is successfully
transmitted, then αk(t) = 1. We assume
that the probability of successfully output
transmission is 0 < r < 1. Therefore,
P(αk(t) = 0) = 1− r, ∀k, t and P(αk(t) = 1) = r. Hence, we conclude that Eαk(t) = r.

Some of the assumptions are as follows.
A1. There exists a unique ud(t) for generating the desired output yd(t) with the initial
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state xd(0), where yd(0) = C(0)xd(0) is such that

xd(t+ 1) = f(t, xd(t)) + g(t, xd(t))ud(t),

yd(t) = C(t)xd(t).
(2)

A2. ∀t the i.i.d measurement noise sequence ζk(t), k = 0, 1, ... has Eζk(t) = 0,

supkE|ζk(t)|
2
< ∞, and lim

n→∞

1

n

n
∑

k=1

ζk(t) (ζk(t))
T = ζt a.s. such that ζt is an unknown

matrix.

Remark 1. The condition utilized to the noise measurement is based on the iteration
axis rather than the time axis, and, since the process is performed repeatedly and
independently, therefore, there are no rigorous conditions.

A3. ∀ t = 0, 1, ..., N , nonlinear functions f(t, xk(t)) and g(t, xk(t)) have the GLC
condition, that is, ∀ x1, x2 ∈ R

n, |f(t, x1)− f(t, x2)| ≤ lf |x1 − x2| and ∀ x1, x2 ∈ R
n,

|g(t, x1)− g(t, x2)| ≤ lg |x1 − x2|, where lf > 0 and lg > 0 are the Lipschitz constants.

Remark 2. This is the GLC condition, which we use to design the ILC algorithm and
analyze its convergence.

A4. It is supposed that the sign of C(t + 1)g(t, xk(t)) does not change during the
learning process, and its unknown value is nonzero. Therefore, it is assumed that C(t +
1)g(t, xk(t)) > 0.

Remark 3. C(t+1)g(t, xk(t)) indicates the control direction. Assumption A4 is necessary
because otherwise a plan must be design to find the direction of right control, which
complicates the controller.

A5. The measurement noise sequence and the initial state sequence are mutually
independent. Furthermore, the i.i.d initial state sequence is resetting asymptotically in
the sense that xk(0) → xd(0), w.p.1, when k → ∞.

Remark 4. This technique is necessary to realize the asymptotically re-initialization
condition. Remarkably, the classical identical initial condition is a particular case of A5.

In Figure 1, the system output of the current iteration transfers via the network to the
ILC controller. In this paper, we consider just data dropouts on the measurement side.

Remark 5. If we consider lost data on both actuator and measurement sides, a more
comprehensive investigation is required because we need to consider the asynchronous
update between the control signal created by the learning controller and the control signal
fed to the plant. Since this is beyond the scope of this paper, for example, refer to [13] for
more study.

A mechanism is needed to ensure the convergence of the input error to zero and
to overcome the effect of random noise on random systems. Therefore, to eliminate the
effect of measurement noise, ensure input convergence and prevent unstable conditions,
we consider the following decreasing sequence ρk for the proposed update algorithm:

ρk > 0, ρk → 0,

∞
∑

k=1

ρk = ∞,

∞
∑

k=1

ρ2k <∞, ∀k = 1, 2, .... (3)
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In this paper, we design the ILC algorithm for stochastic nonlinear systems with
non-differentiable dynamics with GLC condition for updating and generating inputs due

to minimizing lim sup
n→∞

1

n

n
∑

k=1

|yd(t)− yk(t)|
2
, ∀t = 0, 1, ..., N under the lost data conditions.

Due to the unpredictable measurement noise, this article deals with the direct convergence
of system inputs to the desired input.

Indeed, we can not use conventional update control laws for networked systems. In
this paper, the following ILC update law is proposed under stochastic measurement noises
for stochastic nonlinear systems that have GLC condition:

uk+1(t) = uk(t) + ρkEk(t+ 1), (4)

where

Ek(t) =

{

ek(t), if αk(t) = 1,

0, if αk(t) = 0,
(5)

ek(t) = yd(t)− yk(t) is the tracking error.
We present the convergence analysis of ILC update law (4), (5) as well as its

performance evaluation for stochastic nonlinear networked systems with non-differentiable
dynamics that after discretization have GLC condition.

2. Convergence Analysis

Let us show the convergence analysis of the recommended law (4), (5). For brevity,
we use the symbols fk(t) = f(t, xk(t)), fd(t) = f(t, xd(t)), gk(t) = g(t, xk(t)), gd(t) =
g(t, xd(t)), δfk(t) = fd(t) − fk(t), and δgk(t) = gd(t) − gk(t). The status error is defined
with δxk(t) = xd(t) − xk(t). We use the following statement to prove the convergence of
the algorithm (4), (5).

Lemma 1. For system (1), assumptions A1–A5 are considered. If lim
k→∞

δuk(m) = 0, m =

0, 1, ..., t, then we have |δfk(t+ 1)| −−−→
k→∞

0, |δgk(t+ 1)| −−−→
k→∞

0, and |δxk(t+ 1)| −−−→
k→∞

0,

w.p.1, at the time t + 1.

Proof. Taking into account (1) and (2), we conclude that

δxk(t+ 1) = δfk(t) + gk(t)δuk(t) + δgk(t)ud(t). (6)

Let us prove by mathematical induction.
Initial step. Let t = 0, we have

δxk(1) = δfk(0) + gk(0)δuk(0) + δgk(0)ud(0) (7)

Concerning A5, δxk(0) −−−→
k→∞

0, take into account A3 δfk(0) −−−→
k→∞

0 and δgk(0) −−−→
k→∞

0.

Since |gk(0)| ≤ |gd(0)|+|δgk(0)|, we conclude that gk(0) is bounded. Therefore, considering
assumptions of Lemma 1, δuk(0) −−−→

k→∞

0, we have gk(0)δuk(0) −−−→
k→∞

0. Also, ud(0) is

the initial desired input vector, therefore, ud(0) is bounded. Hence, we conclude that
δgk(0)ud(0) −−−→

k→∞

0. Therefore, from (7), we conclude that δxk(1) −−−→
k→∞

0. Now, concerning

A3, we have δfk(1) −−−→
k→∞

0 and δgk(1) −−−→
k→∞

0.
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Inductive step. Suppose that the results of Lemma 1 hold for i = 0, 1, ..., t. We show
that conclusions are correct for t + 1. The method of proof is the same as the initial
step of induction. Therefore, it is proven that δfk(t + 1) −−−→

k→∞

0, δgk(t + 1) −−−→
k→∞

0 and

δxk(t + 1) −−−→
k→∞

0.
✷

In this regard, for convergence investigation, the following statement is proved.

Theorem 1. Suppose that assumptions A1-A5 hold for the stochastic nonlinear networked
system (1). If |1− ρkC(t+ 1)gk(t)| < 1, then for uk(t) updated by ILC update law (4), we
conclude that uk(t) → ud(t) w.p.1, for all t when k → ∞.

Proof. To prove convergence it is necessary to show that δuk(t) = ud(t)−uk(t) → 0 for all
t = 0, 1, ..., N when k → ∞.

Considering (1) and (2), according to (4) and (5), we have

δuk+1(t) = δuk(t)− ρkEk(t + 1) = δuk(t)− ρkαk(t + 1)ek(t + 1) =
= δuk(t)− ρkαk(t + 1)C(t+ 1)(xd(t+ 1)− xk(t+ 1))+

+ρkαk(t + 1)ζk(t+ 1).
(8)

Therefore, again considering (1) and (2), we conclude that

δuk+1(t) = δuk(t)− ρkC(t+ 1)gk(t)δuk(t) + ρkC(t+ 1)gk(t)δuk(t)−
−ρkαk(t + 1)C(t+ 1)δfk(t)− ρkαk(t+ 1)C(t+ 1)δgk(t)ud(t)−

−ρkαk(t+ 1)C(t+ 1)gk(t)δuk(t)− ρkαk(t+ 1)ζk(t+ 1).
(9)

Hence, we have

δuk+1(t) = [1− ρkC(t+ 1)gk(t)]δuk(t) + ρkC(t+ 1)gk(t)δuk(t)−
−ρkαk(t + 1)C(t+ 1)δfk(t)− ρkαk(t+ 1)C(t+ 1)δgk(t)ud(t)−

−ρkαk(t+ 1)C(t+ 1)gk(t)δuk(t) + ρkαk(t+ 1)ζk(t + 1).
(10)

Considering that ζk(t + 1) is independent of αk(t + 1), and the norm is taken from both
sides of (10), we have

|δuk+1(t)| ≤ |1− ρkC(t+ 1)gk(t)| |δuk(t)|+ |ρk| |C(t + 1)| |gk(t)| |δuk(t)|+
+ |ρk| |αk(t+ 1)| |C(t+ 1)| |δfk(t)|+ |ρk| |αk(t+ 1)| |C(t+ 1)| |δgk(t)| |ud(t)|+
+ |ρk| |αk(t+ 1)| |C(t+ 1)| |gk(t)| |δuk(t)|+ |ρk| |αk(t+ 1)| |ζk(t+ 1)| a.s.

(11)

We can prove lim
k→∞

δuk(t) = 0, ∀t by mathematical induction.

Initial step. Assume that t = 0.

|δuk+1(0)| ≤ |1− ρkC(1)gk(0)| |δuk(0)|+ |ρk| |C(1)| |gk(0)| |δuk(0)|+
+ |ρk| |αk(1)| |C(1)| |δfk(0)|+ |ρk| |αk(1)| |C(1)| |δgk(0)| |ud(0)|+

+ |ρk| |αk(1)| |C(1)| |gk(0)| |δuk(0)|+ |ρk| |αk(1)| |ζk(1)| a.s.
(12)

According to A4, for sufficiently large k, we conclude that C(1)gk(0) > ψ, where ψ

is a suitable constant. Note that αk(1) and |C(1)| are bounded. Considering A5, we
have δxk(0) → 0, therefore, according to A3, we conclude that δfk(0) → 0. Hence,
|ρk| |αk(1)| |C(1)| |δfk(0)| → 0 w.p.1, when k → ∞. In (12), the initial desired input
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vector is ud(0), therefore, the norm of ud(0) is bounded. Hence, concerning lim
k→∞

ρk = 0,

we conclude that |ρk| |αk(1)| |C(1)| |δgk(0)| |ud(0)| → 0 w.p.1, when k → ∞. Also,
δuk(0) is the input error vector, therefore, its norm is bounded. Therefore, we have
|ρk| |C(1)| |gk(0)| |δuk(0)| → 0 and |ρk| |αk(1)| |C(1)| |gk(0)| |δuk(0)| → 0, w.p.1, when
k → ∞. ζk(1) is a continuous function of white noise on [0, N ], therefore, |ζk(1)| is
bounded. Therefore, concerning lim

k→∞

ρk = 0, we have |ρk| |αk(1)| |ζk(1)| → 0, w.p.1, when

k → ∞.
We set σ1 = |1− ρkC(1)gk(0)|, σi = 0, i = 2, 3, ..., ek = |δuk(0)|, and ϕk = 0, concerning
the assumption of Theorem 1 and Lemma 1 of the paper [14], from inequality (12), we
result lim

k→∞

|δuk(0)| = 0, w.p.1.

Inductive step. It is assumed that δuk(m) → 0 is true for m = 0, 1, ..., t − 1, then we
show δuk(m) → 0 for m = t. αk(t+1) and |C(t+ 1)| are bounded. In (11), concerning the
inductive assumption and Lemma 1, we conclude that δxk(t) → 0 and δfk(t) → 0. Hence,
in (11) we have |ρk| |αk(t + 1)| |C(t + 1)| |δfk(t)| → 0 w.p.1 when k → ∞.

Note that ud(t) is the desired input vector, therefore, its norm is bounded. Hence,
concerning lim

k→∞

ρk = 0, we conclude that |ρk| |αk(t + 1)| |C(t+ 1)| |δgk(t)| |ud(t)| →

0 w.p.1, when k → ∞. Also, δuk(t) is the input error vector, therefore, its
norm is bounded. Therefore, we conclude that |ρk| |C(t+ 1)| |gk(t)| |δuk(t)| → 0 and
|ρk| |αk(t + 1)| |C(t + 1)| |gk(t)| |δuk(t)| → 0, w.p.1, when k → ∞.

|ζk(t + 1)| is bounded, since ζk(t + 1) is a continuous white noise function on [0, N ].
Concerning lim

k→∞

ρk = 0, we have |ρk| |αk(t + 1)| |ζk(t+ 1)| → 0 w.p.1, when k → ∞.

Let σ1 = |1− ρkC(t+ 1)gk(t)|, σi = 0, i = 2, 3, ..., ek = |δuk(t)|, and ϕk = 0, concerning
|1− ρkC(t+ 1)gk(t)| < 1, Lemma 1 of the paper [14], and (13), we conclude that
lim
k→∞

|δuk(t)| = 0, w.p.1.
✷

Therefore, in the ILC update law (4), (5), we proved that the input error converges to
zero w.p.1 when k → ∞.

Although the system dynamics are assumed to be non-differentiable, there is no
disturbance in proving the convergence of the algorithm (4), (5), and the GLC condition
is sufficient to prove the convergence of the algorithm.

3. Numerical Example

In this section, in order to demonstrate the convergence feature of the proposed
algorithm (4), (5), we consider the following stochastic nonlinear networked system that
have GLC condition:

x1k(t + 1) = x1k(t) sin(|x
2
k(t)− 3|) + 1

2
sin(|x1k(t)− 3|)uk(t),

x2k(t+ 1) = 0, 3 cos(t) cos(x1k(t)) + 0, 75 uk(t),
yk(t) = 0, 2x1k(t) + 0, 35 t0,15x2k(t) + ζk(t).

(13)

Here uk(t) is the input, yk(t) is the output, and

[

x1k(t)
x2k(t)

]

is the state vector of system

(13). The measurement noise of system (13) is ζk(t) with normal distribution N(0, 0, 012).
The time interval is [0, 60], and the desired output is yd(t) = 0, 85 sin( π

20
t) + 0, 3 sin( π

15
t).

The initial iteration input signal is u1(t) = 0. The initial state is x1k(0) = x2k(0) = 0. In the
following, the convergence characteristics of the model (4), (5) and tracking performances
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Fig. 2. Tracking performances of system
(13) for r = 0, 9
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Fig. 3. Average absolute tracking errors
of system (13) for r = 0, 9

are examined according to the different probabilities of lost data. To evaluate tracking
performance, the proposed algorithm is executed for 500 repetitions.
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Fig. 4. Tracking performances of system
(13) for r = 0, 3
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Fig. 5. Average absolute tracking errors
of system (13) for r = 0, 3

First, we set r = 0, 9. Figure 2 shows tracking performance of system (13) for r = 0, 9.
As can be observed, the final output almost corresponds to the desired output.

Figure 3 presents the average absolute tracking error of outputs for r = 0, 9. Figure 2
and Figure 3 indicate that the proposed algorithm has good tracking performances and is
effective.

In the other case, consider r = 0, 3. Figure 4 presents the tracking performance of
the system for r = 0, 3. Figure 5 shows the average absolute tracking error of outputs for
r = 0, 3. As it is observed, the probability of successful transfer of data for r = 0, 30 is low,
and update law performance is worse than for the case r = 0, 9. But while the probability
of successful transmission of data is low, performance is not bad.

Then, we set r = 0, 9, 0, 7, 0, 5, and 0, 3, for the examination of the influence of various
probabilities of lost data. As can be observed in Figure 6 and Figure 7, the algorithm
almost retains its good performance, even if the probability of successful data transfer
decreases with the increasing number of iterations.

In this example, we found that the non-differentiability of system did not disrupt
the convergence and performance of the proposed algorithm, and the GLC condition is
sufficient.
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Fig. 6. Final outputs of system (13) for
r = 0, 9, r = 0, 7, r = 0, 5, r = 0, 3
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Fig. 7. Average absolute tracking error
of system (13) for r = 0, 9, r = 0, 7, r =
0, 5, r = 0, 3

Conclusion

Differentiability of a system is one of the main assumptions for designing ILC
algorithms in stochastic nonlinear networked systems. In this paper, in cases where
stochastic nonlinear networked systems have non-differentiable dynamics, we designed the
ILC algorithm for such systems based on the GLC condition.

We examined the analysis of convergence and the tracking performance investigation of
the introduced algorithm. In this paper, in these stochastic nonlinear networked systems
that have GLC condition, the random lost data was set in the measurement side. We
modelled the random lost data by random Bernoulli variables.

As it turned out, there is no restricted condition for the stochastic lost data
probabilities in the convergence investigation of the input error. Also, we showed that
to present the ILC algorithm, differentiability of the system dynamics is not necessary,
and the GLC condition is enough for generating the ILC algorithm for stochastic
nonlinear networked systems. We showed that, in the ILC update law (4), (5), if
|1− ρkC(t+ 1)gk(t)| < 1, then the input error converges to zero in the almost sure sense.

The theoretical conclusions were confirmed by a numerical example.
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УПРАВЛЕНИЕ НЕЛИНЕЙНЫМИ СТОХАСТИЧЕСКИМИ
СЕТЕВЫМИ СИСТЕМАМИ С НЕДИФФЕРЕНЦИРУЕМОЙ
ДИНАМИКОЙ С ИТЕРАТИВНЫМ ОБУЧЕНИЕМ

Наджафи Седигех Альсадат1, Делавархалафи Али1, Карбасси Сейед

Мехди1

1 Университет Йезд, Йезд, Иран

При разработке алгоритма управления с итеративным обучением (ILC) для стоха-

стических нелинейных сетевых систем основным предположением является дифферен-
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цируемость динамики системы. Во многих случаях в действительности стохастические
нелинейные сетевые системы обладают недифференцируемой динамикой, но их дина-
мические функции после дискретизации с использованием обычных методов имеют
глобальное непрерывное условие Липшица (GLC). В этой статье мы применяем ал-
горитм ILC для стохастических нелинейных сетевых систем, которые имеют условие
GLC. Мы демонстрируем, что для разработки алгоритма ILC дифференцируемость
динамики системы не требуется, а условие GLC достаточно для разработки алгорит-
ма ILC для стохастических нелинейных сетевых систем с недифференцируемой ди-
намикой. Мы исследуем анализ сходимости и отслеживаемость предложенного обнов-
ленного закона для стохастических нелинейных сетевых систем с условием GLC. Мы
показываем, что не существует ограниченного условия для вероятностей выпадения
стохастических данных при исследовании сходимости входной ошибки. Затем резуль-
таты рецензируются и подтверждаются численным примером.

Ключевые слова: управление с итеративным обучением; стохастическая нели-

нейная сетевая система; недифференцируемый; глобальное непрерывное Липшица

(GLC); пропадание данных.
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