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The article is devoted to a review of the author’s results in studying the stability
of semilinear Sobolev type equations with a relatively bounded operator. We consider the
initial-boundary value problems for the Hoff equation, for the Oskolkov equation of nonlinear
fluid filtration, for the Oskolkov equation of plane-parallel fluid flow, for the Benjamin–Bon–
Mahoney equation. Under an appropriate choice of function spaces, these problems can be
considered as special cases of the Cauchy problem for a semilinear Sobolev type equation.
When studying stability, we use phase space methods based on the theory of degenerate
(semi)groups of operators and apply a generalization of the classical Hadamard–Perron
theorem. We show the existence of stable and unstable invariant manifolds modeled by
stable and unstable invariant spaces of the linear part of the Sobolev type equations in the
case when the phase space is simple and the relative spectrum and the imaginary axis do
not have common points.
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Introduction

Currently, a fairly large number of models of engineering and natural science are
described by problems for equations (systems of equations) in which the operator at the
time derivative is not invertible. Some classes of these equations can be considered as linear

Lu̇ =Mu, (1)

semilinear
Lu̇ =Mu +N(u) (2)

and nonlinear
Lu̇ = F (u) (3)

Sobolev type equations. Here all the operators L, M, N, F are defined in Banach spaces,
L, M are linear operators, while N, F are nonlinear operators, and kerL 6= {0}.

The Cauchy problem
u(0) = u0 (4)

for equations (1), (2) and (3) may not have a solution, and if a solution exists, then the
solution may not be unique. Therefore, various approaches were developed to study these
equations. We prefer the phase space method, the foundations of which were laid down
in [24] and continued in [2–5] and others.

At present, Sobolev type equations are studied in various aspects. For example, the
papers [6–8] are devoted to optimal control problems for Sobolev type equations, while
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the solvability of a multipoint initial-final value problem for a Sobolev-type equation is
considered in [39], and Sobolev type equations in spaces of differential forms are studied
in [17]. In the works [11–14], high-order Sobolev type equations are studied. The solvability
of the Cauchy problem and the Showalter–Sidorov problem for a linear Sobolev type
equation in spaces of “noises” was studied in [1] in the case of (L, p)-sectoriality of the
operator M and in [2] in the case of (L, p)-radiality of the operator M . A stochastic linear
Sobolev type equation on a manifold is considered in [17, 18] and in quasi-Banach spaces
– in [38]. In the paper [3], a multipoint initial-finite value problem for a stochastic Sobolev
type equation is studied. The paper [23] is devoted to dynamical measurements in spaces
of “noises”.

This article is of a survey nature and contains results on the local stability of semilinear
Sobolev type equations, which we formulate using the concepts of stable and unstable
invariant manifolds. In the study, first of all, we use the phase space method. Here we
define the set of initial values u0 for which there exists a unique local solution to problem
(1), (4) or a solution to problem (2), (4). Then it is assumed that the given set (called the
phase space) is a simple smooth manifold in a neighborhood of some point u0. In this case,
by virtue of the Cauchy theorem, problem (2), (4) (and, as a special case, problem (1), (4))
has a unique solution. Second, due to the assumptions about the simplicity of the phase
space, we transfer the results of the classical Hadamard–Perron theorem to equation (2).

In this paper, we review the results, which are a continuation of the results on the
stability of equations of the form (2) in the case of (L, p)-boundedness of the operator
M , see [30]. The article consists of Introduction, five sections and References. Section 1
considers the construction of projectors, the splitting of spaces, and the actions of operators
on these spaces; in addition, conditions for the existence of invariant spaces of equation
(1) and invariant manifolds of equation (2) are indicated. The next four sections are
devoted to applications of the results of Section 1. Namely, results on the existence of
stable and unstable invariant manifolds of the Hoff equation are presented in Section 2; of
the Oskolkov equation for nonlinear filtration – in Section 3; of the Oskolkov equation for
a plane-parallel fluid flow – in Section 4; of the Benjamin–Bona–Mahoney equation — in
Section 5.

1. Invariant Manifolds of Sobolev Type Equations

Consider the operators L, M ∈ L(U;F), where U and F are Banach
spaces. By a L-resolvent set of the operator M we mean the set ρL(M) =
{µ ∈ C : (µL−M)−1 ∈ L(F;U)}, while by a L-spectrum of the operator M we mean
σL(M) = C \ ρL(M). If the set σL(M) is bounded, then the operator M is said to be
a (L, σ)-bounded operator.

Let the operator M be (L, σ)-bonded. Construct the projectors

P =
1

2πi

∫

γ

(µL−M)−1Ldµ ∈ L(U), Q =
1

2πi

∫

γ

L(µL−M)−1dµ ∈ L(F),

which split the spaces U = U0⊕U1 and F = F0⊕F1, where U0 (U1) = kerP (imP ), F0 (F1) =
kerQ (imQ), while the contour γ ⊂ C bounds a domain containing σL(M). Denote by
Lk (Mk) the restriction of L (M) on Uk, k = 0, 1. By virtue of the splitting theorem
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(see, for example, [28]), the operators Lk (Mk) ∈ L(Uk;Fk), there exist the operators
M−1

0 ∈ L(F0;U0) and L−1
1 ∈ L(F1;U1).

A vector-function u ∈ Ck((−τ, τ);U), k ∈ N ∪ {∞} satisfying equation (2) for some
τ ∈ R+ is said to be a solution to this equation. A solution u = u(t) to equation (2) is said
to be a solution to problem (2), (4), if equality (4) holds for some u0 ∈ U.

Definition 1. [28] The set P ∈ U is said to be the phase space of equation (2), if
(i) any solution u = u(t) to equation (2) belongs to P, i.e. u(t) ∈ P for each t ∈

(−τ, τ);
(ii) for any u0 ∈ P, there exists a unique solution u ∈ Ck((−τ, τ);U), k ∈ N∪{∞} to

problem (2), (4).

Denote H = L−1
0 M0 ∈ L(U0) and S = L−1

1 M1 ∈ L(U1). The operator M is said to be
(L, p)-bounded operator, if M is (L, σ)-bounded operator and H ≡ O, p = 0 or Hp 6= O,
Hp+1 ≡ O. Consider the set

M = {u ∈ U : (I−Q)(Mu +N(u)) = 0}.

Theorem 1. [28] Let the operator M be (L, p)-bounded, p ∈ {0} ∪ N, the operator
N ∈ Ck(U,F), and the set M be a simple Banach C l-manifold at the point u0. Then,
for some τ ∈ R+, there exists a unique solution u ∈ Cm((−τ, τ);M), m = min{k, l}, to
equation (2) passing through the point u0.

Definition 2. [30] A subspace P ⊂ B is called an invariant space of equation (1), if, for
any u0 ∈ P, a solution u = u(t) to problem (1), (4) belongs to P, i.e. u(t) ∈ P for any
t ∈ R.

Definition 3. [30] Let U1 be a phase space, and U1k, k = 1, 2, be invariant spaces of
equation (1), where U1 = U11 ⊕ U12. We say that the solutions u = u(t) to equation (1)
have an exponential dichotomy (e-dichotomy) if

(i) ‖u1(t)‖U ≤ N1e
−ν1(s−t)‖u1(s)‖U s ≥ t, ν1 > 0,

(ii) ‖u2(t)‖U ≤ N2e
−ν2(t−s)‖u2(s)‖U t ≥ s, ν2 > 0,

where uk ∈ U1k, k = 1, 2.

Theorem 2. [30] Let the operator M be (L, p)-bounded, p ∈ {0}∪N and σL(M)
⋂

{iR} = ∅.
Then the solutions u = u(t) to equation (1) have an exponential dichotomy.

Suppose that the following condition holds:

σL(M) = σL
+(M)

⋃

σL
−
(M), and

σL
+(−)(M) = {µ ∈ σL(M) : Reµ > (<)0}, σL

+(−)(M) 6= ⊘

}

. (5)

Then we can construct the projectors

Pl(r) =
1

2πi

∫

γl(r)

RL
µ(M)dµ, Ql(r) =

1

2πi

∫

γl(r)

LL
µ(M)dµ,

where the contour γl(r) belongs to the left (right) half-plane and bounds a domain
containing the part of the L-spectrum of the operator M that belongs to the given half-
plane.

Вестник ЮУрГУ. Серия ≪Математическое моделирование
и программирование≫ (Вестник ЮУрГУ ММП). 2022. Т. 15, № 1. С. 101–111

103



O.G. Kitaeva

Definition 4. [35] By a stable (unstable) invariant manifold of the equation (2) we mean
the set

M+(−) = {u0 ∈ U : ‖Pl(r)u0‖U ≤ R1, ‖u(t, u0)‖U ≤ R2, t ∈ R+(−)}

such that
(i) M+(−) is diffeomorphic to a closed ball in I+(−);
(ii) M+(−) touches I+(−) at the origin;
(iii) for any u0 ∈ M+(−) and for t→ +(−)∞, ‖u(t, u0)‖U → 0.

Theorem 3. [35] Let the operator M be (L, p)-bounded, p ∈ {0} ∪ N, condition (5) be
satisfied, and the operator N ∈ C∞(U,F) be such that N(0) = 0, N ′

0 = O. Then, for some
Rj , j = 1, 2, there exist stable and unstable invariant manifolds of equation (2). Moreover,
if, for some u0 ∈ M, we have ‖Pl(r)u0‖U ≤ R1 and ‖u(t, u0)‖U ≤ R2 for t→ +(−)∞, then
u0 ∈ M+(−).

2. Invariant Manifolds of Hoff Equation

Let Ω ⊂ Rn be a bounded domain with the boundary ∂Ω of the class C∞. In the
cylinder Ω× R, consider the Hoff equation

(λ+∆)yt = αy + βy3, (6)

which models the buckling dynamics of an I-beam in the case of n = 1 [4]. The desired
function y = y(x, t), (x, t) ∈ Ω × R, has physical meaning of the deviation of the beam
from the vertical, the parameter λ ∈ R+ characterizes the load, and the parameters α,
β ∈ R characterize the material properties.

Reduce equation (6) to equation (2). Let U = L4, F = W−1
2 (hereinafter, all function

spaces are defined on the domain Ω). Define the operators L, M and N by the formulas

〈Lu, v〉 =

∫

Ω

(λuv − uxk
vxk

)dx ∀u, v ∈
◦

W
1

2,

〈Mu, v〉 = α

∫

Ω

uvdx, 〈N(u), v〉 = β

∫

Ω

u3vdx ∀u, v ∈ L4,

where 〈·, ·〉 is the scalar product in L2. For n ≤ 4, the operators L, M ∈ L(U;F) due to

the continuity and density of the embedding
◦

W
1

2 →֒ L4 and continuity of the embedding
L4 →֒ (L4)

∗ ∼= L4
3
→֒ W−1

2 .

Lemma 1. [34] (i) Let n ≤ 4, then, for any λ ∈ R+, α ∈ R \ {0}, the operator M is
(L, 0)-bounded;

(ii) Let n ≤ 4, then, for any β ∈ R, the operator N ∈ C∞(U;F), where N(0) = 0 and
N ′

0 ≡ O.

Theorem 4. [34] (i) Let −λ 6∈ {λk}, αβ > 0 and n ≤ 4. Then the phase space of equation
(6) coincides with the space U.

(ii) Let −λ ∈ {λk}, αβ > 0 and n ≤ 4. Then the phase space of equation (6) is a
simple Banach C∞-manifold

M = {u ∈ U :

∫

Ω

(α + βu2)uϕldx = 0, λl = −λ}
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modeled by the subspace U1 = {u ∈ U : 〈u, ϕl〉 = 0, λl = −λ} .

The continuation of these results is the work [4], in which the question of the stability
of equation (6) is studied. The paper [36] studies equation (6) on graphs, [18] deals with
equation (6) on manifolds, and [11] — in spaces of random K-values.

Theorem 5. [4] Let n ≤ 4, α, β, λ ∈ R+. Then if
(i) λ ≤ −λ1, then, in a neighborhood of the zero point, equation (6) has only a stable

invariant manifold, which coincides with M;
(ii) −λ1 < λ, then, in a neighborhood of the zero point, equation (6) has the finite-

dimensional unstable invariant manifold Mu, dimMu = max{λl : −λl ≤ λ}, and the
infinite-dimensional stable invariant manifold Ms, codim Ms = dim Mu + dim kerL.

3. Invariant Manifolds of Oskolkov Equation

of Non-Linear Filtration

The non-classical equation

(I− æ∆)gt = ν∆g − |g|p−2g, p ≥ 2, (7)

describes dynamics of the pressure of an incompressible viscoelastic fluid filtering in a
porous medium [13]. The parameters æ, ν characterize elastic and viscous fluid properties,
respectively. Let Ω ⊂ R

n be a bounded domain with the boundary ∂Ω of the class C∞.
Reduce equation (7) defined in the cylinder Ω×R to semilinear Sobolev type equation (2)

defined in the Banach spaces U and F. Let U =
◦

W
1

2, F = W−1
2 . Define the operators L, M

and N by the formulas

< Lu, v >=

∫

Ω

(uv + æuxi
vxi

)dx, < Mu, v >= −ν

∫

Ω

uxi
vxi
dx,

< N(u), v >= −

∫

Ω

|u|p−2uvdx, u, v ∈ U.

For n ≥ 3, 2 ≤ p ≤ 4/(n− 2)+ 2, the operators L, M ∈ L(U;F), the operator N : U → F.

Lemma 2. [32] (i) For n ≥ 3 and 2 ≤ p ≤ 4/(n−2)+2, the operator M is (L, 0)-bounded;
(ii) the operator N ∈ C1(U;F), N(0) = 0, N ′

0 ≡ O.

Consider the set M ⊂ U of the form

M =

{

U, if æ−1 /∈ {λk};
{u ∈ U :< Mu+N(u), ϕl >= 0}, λl = æ−1

}

and the space U1 of the form

U1 =

{

U, if æ−1 /∈ {λk};
{u ∈ U :< u, ϕl >= 0}, λl = æ−1

}

.

Theorem 6. [32] For any æ ∈ R \ {0}, ν ∈ R+, n ≥ 3, 2 ≤ p ≤ 4/(n− 2)+ 2, the phase
space of equation (7) is the set M, which is a simple Banach C1-manifold modeled by the
space U1.
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Theorem 7. [5] For any æ ∈ R−, ν ∈ R+, n ≥ 3, 2 ≤ p ≤ 4/(n−2)+2, in a neighborhood
of the zero point, equation (7) has at most a finite-dimensional stable invariant manifold
Ms, dimMs = max{l : λ−1

l < æ}, and an infinite-dimensional unstable invariant manifold
Mu, codimMu = dimMs + dimkerL.

4. Invariant Manifolds of Oskolkov Equation

of Plane-Parallel Flow

Let Ω ∈ R2
(x1,x2)

be a bounded domain with the boundary ∂Ω of the class C∞. In the
cylinder Ω× R, consider the Oskolkov equation

(λ−∆)∆ψt = ν∆2ψ −
∂(ψ,∆ψ)

∂(x1, x2)
, (8)

which models a plane-parallel flow of a viscoelastic incompressible fluid [14].
In order to reduce equation (8) to equation (2), we set

U = {u ∈ W 4
2 : u(x1, x2) = ∆u(x1, x2) = 0, (x1, x2) ∈ ∂Ω}, F = L2(Ω),

and define the operators L, M and N by the formulas

L : u→ (λ−∆)∆u, M : u → ν∆2u,

N : u → −
∂(u,∆u)

∂(x1, x2)
.

By construction, L,M ∈ L(U;F).

Lemma 3. [29] (i) For n ≥ 3 and 2 ≤ p ≤ 4/(n−2)+2, the operator M is (L, 0)-bounded;
(ii) the operator N ∈ C1(U;F), N(0) = 0, N ′

0 ≡ O.

Theorem 8. [29] For any λ ∈ R, ν ∈ R \ {0}, the phase space of equation (8) is the set

M =

{

U, λ /∈ {λk};
{u ∈ U : 〈Mu+N(u), ϕl〉 = 0, λ = λl},

which is a simple Banach C∞-manifold modeled by the space

U1 =

{

U, λ /∈ {λk};
{u ∈ U : 〈u, ϕl〉 = 0, λ = λl}.

Theorem 9. For any λ ∈ R, ν ∈ R+, in a neighborhood of the zero point, equation (8)
has a finite-dimensional unstable invariant manifold Mu, dimMu = max{l : λl > λ}, and
an infinite-dimensional stable invariant manifold Ms, codimMs = dimMu + dim kerL.

5. Invariant Manifolds of Benjamin–Bona–Mahoney Equation

The equation

λzt − zxxt = νzxx − zzx (9)
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models long waves in dissipative and dispersive media [15]. In order to reduce equation
(9) to equation (2), we set

U = {u ∈ W l+2
p (−π, π) : u(−π) = u(π) = 0}, F =W l

p(−π, π),

where l ∈ {0} ∪ N, p ∈ [2,+∞). Define the operators L, M, N : U → F by the formulas

L = λ−
∂2

∂2
, M = ν

∂2

∂2
, N : u→ −uxu.

Since the embeddings U →֒ F are continuous, the operators L, M ∈ L(U;F).

Lemma 4. [33] (i) For any λ, ν ∈ R \ {0}, the operator M is (L, 0)-bounded.
(ii) For any ν, λ ∈ R\{0}, the operator N ∈ C∞(U;F), where N(0) = 0 and N ′

0 ≡ O.

Construct the set M and the space U1. In this case, they have the form

M =







U, λ 6= −n2;

{u ∈ U :
π
∫

−π

(νuxx − uxu) sin lxdx = 0, λ = l2},

U1 =







U, λ 6= −n2;

{u ∈ U :
π
∫

−π

u(x) sin lxdx = 0, λ = l2}.

Theorem 10. [33] For all λ, ν ∈ R \ {0}, the phase space of equation (9) is the union
of two simple Banach C∞-manifolds modeled by the space U1.

Therefore, it is shown that the phase space of equation (9) is the union of two connected
components. In what follows, we denote by M the component of this set that contains the
zero point.

Theorem 11. For any λ ∈ R\{0}, ν ∈ R+, in a neighborhood of the zero point, equation
(9) has a finite-dimensional unstable invariant manifold Ms and an infinite-dimensional
stable invariant manifold Mu modeled by the spaces Us and Uu, respectively.

Conclusion

Numerical experiments on the solvability of linear stochastic Sobolev type equations
are discussed in [19–21], and on stability — in [9–13]. We intend to carry out similar studies
on the stability of semilinear stochastic equations.

Acknowledgments. The author expresses his sincere gratitude to Professor
G.A. Sviridyuk for setting tasks and fruitful discussions.
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ОБЗОРНЫЕ СТАТЬИ

УДК 517.9 DOI: 10.14529/mmp220106

ИНВАРИАНТНЫЕ МНОГООБРАЗИЯ ПОЛУЛИНЕЙНЫХ
УРАВНЕНИЙ СОБОЛЕВСКОГО ТИПА

О.Г. Китаева, Южно-Уральский государственный университет, г. Челябинск,
Российская Федерация

Статья посвящена обзору результатов автора по исследованию устойчивости по-
лулинейных уравнений соболевского типа с относительно ограниченным оператором.
Рассмотрены начально-краевые задачи для уравнений Хоффа, Осколкова нелинейной
фильтрации жидкости, Осколкова плоскопараллельного течения жидкости, Бенжами-
на – Бона – Махони. Эти задачи при подходящем выборе функциональных пространств
могут быть рассмотрены как частные случаи задачи Коши для полулинейного уравне-
ния соболевского типа. При исследовании устойчивости мы пользуемся методами фа-
зового пространства, основанными на теории вырожденных (полу)групп операторов,
и применяем обобщение классической теоремы Адамара – Перрона. Показано суще-
ствование устойчивого и неустойчивого инвариантных многообразий, моделируемых
устойчивым и неустойчивым инвариантными пространствами линейной части уравне-
ния, в случае, когда фазовое пространство является простым и относительный спектр
и мнимая ось не имеют общих точек.

Ключевые слова: уравнения соболевского типа; инвариантные многообразия;

уравнения Осколкова; уравнение Хоффа; уравнение Бенджамина – Бона – Махони.
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