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ALGORITHM FOR VERIFYING THE MEASUREMENTS
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This paper describes the Kramers—Kronig relation for verifying the obtained values of
S-parameters for different operation conditions of a transmission line. We obtain and prove
lemmas for S-parameters for operation conditions of the line under short-circuit, open-
circuit, and matched load. We give a comparison of theoretical and experimental values,
which confirm the correctness of the obtained relations and conclusions.
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Introduction

One of the most important problems in the theory of measurements and the
determination of physical quantity values is verifying the validity of the results obtained
and their compliance with the proposed mathematical or physical model of the
measurement process. When measuring the electrodynamic parameters of composite
materials, there exists no a reliable algorithm for verifying the obtained measurement
results for compliance with the parameters of the materials under study. A number of
studies suggests that the Kramers—Kronig relation can be used as such verification [1-4].

The Kramers—Kronig relations integrally connect the real and imaginary parts of any
complex function that is analytic in the upper half-plane. The relations are often used
to describe the connection between the real and imaginary parts of response functions in
physical systems, because the analyticity of the response function implies that the system
satisfies the principle of causality, and vice versa |5, 6].

In particular, the Kramers-Kronig relations express the relationship between the
real and imaginary parts of the permittivity in classical electrodynamics as well as the
probability amplitudes of the transition (matrix element) between two states in quantum
field theory. In mathematics, the Kramers—Kronig relations are known as the Hilbert
transform [7-9].

1. Mathematical Model of Verifying Measurement Results

In mathematics and in signal processing, the Hilbert transform is a linear operator
that, for each function u(t) of a real variable, finds a companion function H (u(t)) in the

same domain by convolution with the function % :

+o0

H(u(t)):—%ﬁ.p. / ) o,

t—T1

—00

The Kramers—Kronig relation applied to physics can be written as follows: for any complex
function f(w) of a complex variable w,

fw) = uw) +iv(w),
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if the function f(w) is analytic in the upper half-plane, w € R and the following condition
is fulfilled:

then the Kramers—Kronig relation takes the form:

400
1 " /
uwlw) =1+ =19.p. / 8/ () dw',
m W —w
1w
v(w) = —=J.p. / u/(w) dw'.
T W —w

Here ¥.p. denote taking the integral in the sense of the Cauchy principal value. It can
be seen that the functions u(w) and v(w) are not independent, therefore, the complete
function can be restored if only its real or imaginary part is given. The principal value
of the Cauchy integral is a generalization of the concept of the Riemann integral, which
allows to calculate some divergent improper integrals.

The main idea of the Cauchy principal value of the integral is that when the integration
intervals approach the singular point from both sides at the same speed, the singularities
level out each other (due to different signs on the left and right), and as a result, we
can obtain a finite boundary. This boundary is called the Cauchy principal value of the
integral.

The permittivity of a dispersed medium can be represented as a complex function of
frequency:

e(w) =¢&'(w) +ie" (w), (1)

where £'(w) and £”(w) are real and imaginary parts of the permittivity, respectively. Then
we can write the Kramers—Kronig relation for the permittivity as follows:

6//

(@) .

xr —

1
g(w) =1+ =d.p. /
m

+oo
1 !/
e'(w) = —;ﬁ.p. / £'(z) dzx.

r—w
—0o0
However, known papers present no numerical verification of these relations. Since the
calculation of the electrodynamic parameters is based on the results of measurements of
the S-scattering matrix, therefore, we prove that for these measured values, the Kramers—
Kronig relations are valid for such line operating conditions as short circuit, open circuit,
and matched load.

2. Short Circuit

Let us prove that the Kramers-Kronig relation holds for the S-matrix measured under
the short-circuit conditions. The short-circuit S-parameter can be represented as

S(w) = 85" (w) + 15" (w), (2)
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where S’(w) is a real part, S”(w) is an imaginary part. Under the short-circuit conditions,
the real part is S’(w) = —1, within the full frequency range, while the imaginary part is
S"(w) = 0. Let us introduce the function f(w) = S(w) + 1.

Lemma 1. Let f = f(w), where f(w) = S(w)+1 and S(w) = S'(w)+1iS"(w) are measured
values of the short-circuit S-parameters, and suppose that the following conditions hold:
(i) f = f(w) is analytic in the upper half-plane R ;
(i1) |li|m0f(w) —
w|—

Then S(w) can be represented as

)= i /S W~ 1, 5"(w) :——19/
w—w W_w

Proof. Step 1. Let us prove that the function f(w) must be analytic. Since the function
S(w) is analytic, the Cauchy-Riemann relation holds:

05 _os o5 _ o3’
or Oy Oy Oz

For the function f(w) the real part is Re (f(w)) = S’(w) + 1, and the imaginary part
is Im (f(w)) = 5" (w).
Let us calculate the derivative of the real part:
0 as" 08" oY 05"
Re = = =— :
ay (Fw) Jy + oy Jy ox

Since the Cauchy-Riemann relation holds, the function is also analytic.
Step 2. Let us prove that the condition f(w) — 0 is satisfied at w — 0.
Let us calculate lir% f(w). By the theorem on the limit of a complex function, the
w—

value 1y = wuy + ivp is the limit of the function f(z) = u(z,y) + iv(z,y) at z — 2y <
lim  w(z,y) =upand lim v(z,y) = vg. For the real part Re (f(w)), the limit is:

T — g T — Xo
Y — Yo Y — Yo

lim f(w) = lim[S"(w) 4+ 1] = 0.

w—0 w—0

For the imaginary part Im (f(w))
lim Im (f(w)) = lim S"(w) = 0.

w—0 w—0

Accordingly, for the function f(w), the relation liH(l) f(w) =0 is fulfilled.
w—

lim f(w) = lim Re (f(w)) 4+ lim Im (f(w)) = 0.

w—0 w—0 w—0

Since the function f(w) is analytic, and its limit is equal to 0, the conditions for the
Kramers—Kronig relation are satisfied:

“+00

+oo
1 Im (f (o 1 Re !
Re (f(w)) = =d.p. / de/, Im (f(w)) = —=1.p. / ,(7f(w)dw/.
m w —w m w —w
—00 —00
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+oo +oo
1 i !/ / 1 ! !/ 1 /
S'(w)+1==1d.p. / de’, S"(w) = —=1d.p. / (S ? D )dw'.
7r W —w 7r W —w
1 +OOS// !/ !/ 1 +eo S/ / 1 /
S'(w) = —=d.p. / de’ -1, " (w) = —=d.p. / (S 2 I C )dw'.
7r W —w 7r w' —w

3. Open Circuit

Let us prove that the Kramers—Kronig relation holds for the open-circuit S-matrix
measurements. The S-parameter for open circuit can be represented as (2) where S’(w) is
a real part, S”(w) is an imaginary part. For open circuit, the real part is S’(w) = 1, within
the full frequency range, while the imaginary part is S”(w) = 0.

Lemma 2. Let f = f(w), where f(w) = S(w)—1 and S(w) = 5" (w)+iS"(w) are measured
values of the open-circuit S-parameters, and the following conditions hold:

(i) f = f(w) is analytic in the upper half-plane R ;

(1) lir%f(w) — 0.

w—r
Then S(w) can be represented as:

—+00 —+00
1 S// / 1 S/ /
§'(w) = ~0.p. / %dw’%—l,é’”(w):—;ﬁ.p./ wl(fzjdw'.

Proof. Step 1. Let us prove that the function f(w) = S(w)—1 is analytic. Since the function
S(w) is analytic, the Cauchy—Riemann relation holds:

05 _ 05" 05 _ 05"

or Oy’ Oy Oz

For the function f(w), the real part is Re (f(w)) = S’(w) — 1, and the imaginary part is
Im (f(w)) = S”(w). The derivative of the real part is

0 98 98" 98 9S"

gy e VW) =5 =5 =5, = "o

Since the Cauchy—Riemann relation holds, the function f(w) is also analytic.
Step 2. Let us prove that at w — 0 , the condition f(w) — 0 is satisfied.
Let us calculate lir% f(w). By the theorem on the limit of a complex function, the
w—

value ¥y = wuy + 1vp is the limit of the function f(2) = u(z,y) + iv(z,y) at z — 2z &

lim  w(z,y) =wupand lim wv(x,y) = vy. For the real part Re (f(w)), the limit is
T — To T — X0
Y=Y Y=Y

lim f(w) = lim[S"(w) — 1] = 0.

w—0 w—0

For the imaginary part Im (f(w)),
lim Im (f(w)) = lim S"(w) = 0.

w—0 w—0
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Accordingly, for the function f(w), the condition lir% f(w) =0 is fulfilled.
w—

lim f(w) = lim Re (f(w)) 4+ lim Im (f(w)) = 0.

w—0 w—0 w—0

Since the function f(w) is analytic, and its limit is equal to 0, the conditions for the

Kramers—Kronig relation are satisfied:

+00 +00
Re (f(w)) = %ﬁ.p. / w(jw/, Im ( f(w)) = —%ﬁ.p. / w(m/.
1 +oo S// / !/ 1 o S/ !/ 1 !/
S'(w) — 1= ;19.]9. / %dw’, S"(w) = —;ﬁ.p. / ( ((Z}? ‘_"w)(w )dw'.
1 +OOS// !/ 1 o S/ /
S'(w) = ;ﬂ.p. / %dw' +1, §"(w) = —;ﬁ.p. / w/(fz)dw’.

4. Matched Load

Let us prove that the Kramers—Kronig relation holds for the S-matrix measured under
the matched load conditions, for which the real part is S’(w) = 0, within the full frequency

range, while the imaginary part S”(w) = 0.

Lemma 3. Consider the measured values of the S-parameters, where S(w) = S'(w)
iS"(w), under the matched load, and assume that the following conditions hold:
(i) S = S(w) is analytic in the upper half-plane R, ;
(i) for the function S = S(w), the condition |li|m0f(w) — 0 is satisfied.
w|—

Then, S(w) can be represented as:

+o00 1o
, 1 S"W) o 1 S
510 = ton [Ty )= Loy [ T

Proof. Based on Lemmas 1 and 2 and the initial data S’(w) = 0, 5”(w) = 0, we obtain:

+

+oo “+o0o
1 I ! 1 !
Re (f(w)) = =9d.p. / de', Im (f(w)) = —=10.p. / wdw'.
m w —w m w —w
Since Re (f(w)) = 5'(«') and Im (f(w)) = 5" (w), we get:
1 e 1w
S'(w) = =d.p. / dw', S"(w) = —=J.p. / dw'.
s w —w T w —w
|
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Frequency dependence of the real and imaginary parts of Si;

5. Experimental Data

Based on the measured values of S-parameters for carbonyl iron, the real part of
S11 was calculated from the measured values of the imaginary part of Si;. The results of
measurements and calculations are shown in Figure. The black line is the measured values,
the blue line is calculated value.

Based on the obtained measurement results, we can propose the following algorithm
for verifying the measured values.

1. Measure S-parameters and input resistance for line operation under short-circuit,
open-circuit, and matched load conditions.

2. Check the fulfillment of the Kramers—Kronig relation for the measured values of
S-parameters (formulas (3) and (4)) under the short circuit conditions. If the relations are
not satisfied, check the meter calibration under the short circuit conditions.

3. Check the fulfillment of the Kramers-Kronig relation for the measured values of
S-parameters (formulas (5) and (6)) under the open-circuit conditions.

4. Check the fulfillment of the Kramers-Kronig relation for the measured values of
S-parameters (formulas (7) and (8)) under the matched load conditions.

5. After completing Steps 1 — 4 and checking the fulfillment of the relations for S-
parameters in all the measurement conditions, calculate the electrodynamic parameters:
permittivity and permeability.

6. Check the fulfillment of the Kramers-Kronig relation for the permittivity and
permeability (formulas (13) — (16)).

7. From the calculated values of the permittivity and permeability, it is possible to
calculate the input resistance of the loaded line. Check the obtained calculated value of the
input resistance with the measured input resistance in the matched load mode in Step 1.

Conclusions

This paper showed that the experimental values of the S-parameters for different
operating modes of the line satisfy the Kramers—Kronig relation. The Kramers—Kronig
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relations express the relationship between the real and imaginary parts of the permittivity
in classical electrodynamics. We proved lemmas for various line operating conditions and
developed the algorithm for verifying the measurements based on the proved lemmas.
Comparison of theoretical and experimental values showed their good quantitative and
qualitative agreement.
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AJITOPUTM IIPOBEPKU AJJEKBATHOCTU N3MEPEHUI

A.JI. Illecmaxos', .C. Kaveau', M.I. Baxumos'
'TOxkm0-Ypasbekuit rocyapeTBenHbli yHIBEPCUTeT, I. e Ia0nHcK,
Poccniickas ®enepariust

B craThe mpuBeneno onucanme coornomenus Kpamepca — Kponnra 11 mpoBepKu mo-
JIYYEHHBIX 3HAYEHU S-TapaMeTpoB IPH PA3JUIHBIX PEKUMaxX paboThl JIMHUU Tepeadu.
[Tosyaensr u JOKa3aHBL JIEMMBI JJIs S-TApaMETPOB PEKUMOB pabOTHI JIMHUU TPH KOPOTKOM
3aMBbIKAHUU, XOJJOCTOM XOJI€ U COIJIACOBAHHON Harpys3ke. [IpuBesieHo cpaBHeHME TeOpeTmIe-
CKUX U 9KCIIEPUMEHTAJbHBIX 3HAYEHUN, KOTOPbhIE MTOJTBEPKIAIOT [IPABUIBHOCTD II0JTYY€H-
HBIX COOTHOIIIEHUI U BBIBOJIOB.

Karoueswie caosa: coomnowenue Kpamepca — Kponuea; usmepenue; arexmpoounamu-
YeCKUE NAPaMempsvl; NPOBEPKaA U3MePEHU.
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