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The paper presents a new two-stage parametric identification procedure for
constructing a navigation satellite motion model. At the first stage of the procedure, the
parameters of the radiation pressure model are estimated using the maximum likelihood
method and the multiple adaptive unscented Kalman filter. At the second stage, the
parameters of the unaccounted perturbations model are estimated based on the results
of residual differences measurements. The obtained results lead to significant improvement
of prediction quality of the satellite trajectory.
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Introduction

Description of a system in terms of nonlinear mathematical models allows to take
into account additional factors due to nonlinear laws of nature and to conduct a better
analysis of objects. Obtaining a model with good predicting properties requires informative
measurement data and a suitable model structure capable of accurately describing the
dynamics of the process; therefore, when constructing models of nonlinear systems,
parametric identification methods are used. Traditionally, the maximum likelihood (ML)
method is used to solve the problem of parametric identification [1-3]. In case of using
dynamic models with Gaussian noise, the corresponding identification criterion is written
on the basis of the equations of the extended Kalman filter (EKF) [4]. Although the EKF is
widely used, this filter has some drawbacks. The filter applies the standard linear Kalman
filter technique to linearize a nonlinear model. It requires the sufficient differentiability of
the dynamic state and the susceptibility to biasing and to divergence of the state estimates.
This approach is sub-optimal and can easily lead to the divergence. These difficulties can
be successfully overcome with such nonlinear filters as the cubature Kalman filter [5,6]
and the unscented Kalman filter (UKF) [7-10]. S.J. Julier et al. [7] proposed the UKF
as a derivative free alternative to the extended Kalman filter in the framework of state
estimation. Statistical parameters of noise are set inaccurately or they are completely
unknown, when solving practical problems. The presence of outliers in the measurement
data makes the further determination of such characteristics complicated. When using
the incorrect a priori information about the noise properties of the system and/or the
measurements, the obtained estimates may be biased. The covariance matrices of the
system and the measurements noises are usually selected accordingly to the results of
some empirical data analysis or the various situations modelling. The correct specification
of the statistical noise parameters often determines the accuracy of the state vector
estimation. One of the possible solutions to this problem is using adaptive methods for the
measurement data processing [11-16], which, along with the state vector estimation, can
restore the statistical characteristics of noises. Currently, there exists a sufficient number
of publications in which adaptive modifications of UKF are given. However, it was shown
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in [17] that the use of one of the adaptive modifications of UKF in the construction of
satellite orbital motion model is not possible. In this regard, the paper proposes to use
several adaptive filters together when solving the parametric identification problem. In
this research, two different modifications of UKF (adaptive block I [16-19] and adaptive
block II [17,20]) are combined with the UKF algorithm to evaluate and improve the
statistical properties of process noise. This correction can result in reducing the model
error, suppressing the filtering divergence and improving the filtering accuracy. The idea
of a two-stage identification procedure was considered in [21|. At the first stage of the
procedure, all unknown parameters of the motion and measurements models are evaluated
based on the least squares method (LSM). Next, we calculate the difference (discrepancy)
between the measured values and those calculated from the obtained model of motion and
measurements. At the second stage, linearized motion and measurement models are used
for corrections. The motion model includes additional accelerations described by the first-
order Gauss—Markov process. The parameters of the Gauss—Markov process, together with
corrections to the motion vector of the apparatus, are determined using the Kalman filter.
For the difference between the LSM estimates and estimates based on the Kalman filter,
we construct a function on the measurement interval, which is then used for predicting.
In this paper, new algorithms for two-stage parametric identification are proposed. For
a more accurate construction of the mathematical model, it is proposed to additionally
evaluate disturbances based on the results of measurements of residual differences by
finding estimates of radiation pressure parameters.

1. Motion Model of Navigation Satellite

The quality of the ephemeris-temporal support for Global Navigation Satellite
System (GNSS) technologies depends on adequacy of the applied mathematical models
describing the orbital motion of navigation satellites. Consider the following stochastic
nonlinear continuous-discrete model of orbital motion of the navigation satellite and model
measurement [22,23]:

d . p- Mg .
00 = T+ ) + 00 0) + (050, 1), 1< ltal, ()

7

F(R()
S(tk+1) = h(R(thrl)) + V(thrl)? k= 07 17 R N — 17 (2)

where R(t) = (;8) , r(t) = ((z(t),y(t), 2(t))T is the coordinate vector of the navigation

satellite in an inertial coordinate system, 7(t) = (Vi(¢),V,(¢),V.(t))" is the velocity
vector of the navigation satellite in an inertial coordinate system; f(R(t)), h(R(tx+1)) are
nonlinear functions, where p is the gravitational constant, Mg is the mass of the Earth;
Ir(t)]] = /22(t) + y2(t) + 22(t) is the radius of the orbit, ||-|| is the Euclidean vector norm,
g1(r(t)) is the perturbations, caused by the non-sphericity of the Earth’s geopotential,
g2(r(t)) are the perturbations caused by the gravitational influence of the Moon, the
Sun and/or the other planets, g3(r(t),7(t),8) are perturbations from the solar radiation;
6 € y is the vector of unknown parameters; s(txi1) is the measurement vector (for
example, pseudorange, query range, satellite laser ranging (SLR) from ground points to the
navigation spacecraft). In a particular case, a posteriori ephemeris of navigation spacecraft
obtained by various processing centers can act as measurements (i.e. A(R(tg+1)) = 7(tr+1))-
Suppose that

e the random vectors w(t) and v(tg+1) form white Gaussian noises with unknown
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covariance matrices of system and measurements noises
Elw(t)] = 0, Elw(t)w" (1)] = Qu(t)d(t — 7);

Ev(tii1)] =0, Ev(te)v” (tis1)] = Qu(tre1)0rs;
Elv(tp)wh (1)) =0, ki=0,1,...,N—1, 7€ [to, tn];

e the state vector R(t) in the moment ¢, is normally distributed with the parameters
E[R(ty)] = R(to),  E[(R(to) — R(to))(R(to) — R(ta))"] = P(to)

and has no correlation with w(t), v(tx41) for values of k.

A mathematical description of each of the forces affecting on a satellite can be found
in, for example, [23,24]. It is important to note that some of these force models include
parameters, which numerical values are only partially known.

In the formation of model (1), (2) it remains problematic to take into account
perturbations from solar radiation pressure on the satellite [24-29]. To compute
g3(r(t),7(t),0) in an inertial coordinate system, the following solar radiation prediction
(SRP) model is used [17,23,29]:

g3(r(t),7(t),0) = A(r(t)) - p2(r(t)) - [ix - (61 + Oz cos o (r(t), 7(t)) + Oz sina(r(t), 7(t)))+
+ia(04 + 05 cos o (r(t),7(t)) + Os sino(r(t), 7(t)))+

+i3(07 + O cos o (r(t),7(t)) + Oy sino(r(t), 7(t)))]. (3)
Here A(r(t)) is the eclipse factor, p(r(t)) is the distance between the satellite and the Sun,
a(r(t),r(t)) is the argument of the latitude for the navigation satellite, i; = % is

ort in the direction of solar radiation, 7, = ”2 i:ggn is ort normal to the Sun-satellite-Earth,

i3 = 11 X ig is ort that complements the system to the right triple of vectors.

2. Two-Stage Parametric Identification Procedure

With informative measurement data and a suitable model structure we can get a model
with fine predictive properties and able to describe the dynamics of the process. Usually,
the construction of model (1), (2) consists in finding estimates of the unknown parameters
of the SRP model.

In this article we propose a two-stage procedure for parametric identification of model
(1), (2) (see Figure).

At the first stage of the procedure, the parameters of the radiation pressure model
are estimated using the ML method based on several adaptive unscented Kalman
filter. The estimation of unknown parameters of the mathematical model is carried out
according to measurement data = and identification method. The a priori assumptions
allow to use the ML method for the parameters estimation. In mild conditions, ML
method estimates have such practically significant properties as asymptotic unbiasedness,
consistency, asymptotic efficiency and asymptotic normality. One class of the methods
to solve the problem of nonlinear models identification basically the continuous-discrete
EKF applied to a linearized system. As noted earlier, the use of continuous-discrete
EKF requires differentiability of nonlinear functions that belong to the right side of the
equations of state, and measurement for model (1), (2) carries additional computational
complexity. UKF is based on unscented transformation used for statistics computation
of a random vector undergoing transformation by a nonlinear function. Unscented
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statistics information which may induce large state estimation errors and filter divergence.
To overcome this defect, a number of adaptive filter methods were published to weaken
the impact of uncertainly noise information, and so the adaptation of noise covariance
matrices becomes an important direction for developing stability and convergence filter.
We propose using the multiple adaptive modifications of the UKF, which allow using a
weighted average estimate of the state vector.

At the second stage, the parameters of the unaccounted perturbations model are
estimated based on the results of measurements of residual differences. The scheme of
the two-stage identification procedure is presented in Figure.

We present a two-stage algorithm for estimating the parameters of the SRP model and
predicting the satellite orbital motion.

Stage 1. Construct the matching model (one-stage parametric identification)

1. Solve the problem of parametric identification based on the ML method

N-1 N-1

N 1 1
0= in — Indet Py (¢ - tee) TPt t 4
argiuin - ; ndet Py (1) + 5 kZ:; e(trer)” Py (te1)e(trrn), (4)

where e(tx+1) and Py (tx41) are defined based on the corresponding equations of the
following adaptive UKF [16,17].

Initialization is implemented as follows.
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e Set the values
£=0,001, n=2, ¢=k=0, b=0,998.

e Define the initial values
R (tolto) = R2(tolte) = R(to), P(tolto) = P(to), Qu(te), Qu(t1),

Ng, N are positive numbers.

e Calculate l
[l = EQ(H + ¢) —n (n = 6 is the size of R(t)), ag = pt

! 1 o
ﬁoz(n_'_l)_'_(l_éﬂ_i_n)?O‘i:mzﬁiaz_la"ana
a = [04070417"'7042n]T7
A= (I—1a|...|d])-diag(Bo, B1,. .., Pawm) (I —]a|...la])".
S—— ——
2n+1 2n+1

For k=0,N -1
Prediction is implemented as follows.

e Define R(tpq1|tr) and P(tgs1|tr) as the result of differential equations (5), (6) integration

d ~
%R(t’tk) = Ry(tlte)a, e <t <t (5)

%P(t\tk) = R7(t|tx) ARY (t|tr) + Ry (tte) A(RT (t]te))" + Qu(t), tr <t <tr1,  (6)

where the transformed set of vectors is defined as
Ry(tlty) = [f (Ro (t[ta)) | f (RT@[ER)] - 1 f (R (EEk) Inx 2nt1)

the sigma points R} (t|ty), i = 1,n are computed by the following formula

(tlt), =0,
(t|te) + Vn + ID;(tty), i=1,n, (7)
R(t|ty) — Vn +1D;_n(t|ty), i=mn+1,2n,

RT(tltx) = [Ro(tte) [RT(E[t)] - - [R5, (E[tk) I 2n 1),

where D; is the i-th row of the lower triangular matrix obtained by the Cholesky
decomposition of P(t|ty).

R
R (t{ty) =< R

Updating is implemented as follows.

e Find the set R (tx41|tx) using (7) with the substitution ¢ = ¢4 ;.
e Calculate

Sn(trsaltr) = [h(RG (B [te) R (RT (rga|tr)] - - [PCRS, (B [t) Imx 2n+1)

e(trr1) = s(trr1) — Sultrralte)a.
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Adaptation block I | Adaptation block II
Estimation of the covariance matrix of measurement noise
_ Nr —1 1
) 1—b E(th) = ];VR £(te) + N—R&“(tkﬂ)
b = 1 — pk+1’ .
Qu(tk-‘rl) - (1 - Bk)@u(tk)+ AQV(t]H_l) - NR — 1(€(tk+1) B é(tlﬁ—l))
+ople(terr)e” (b)) — (e(trr1) — E(tesr)) " —
2n 1
" Bih(RY (trsalta)) — Sltrsilte)a): —N—RSh(tkH!tk)AS,?(tkH\tk),
1=0 . X ' N 1.
(h(R] (tiaa[tr)) — Sh(trrltr)a)”] Qv (th+1) = | diag (t) ) +
+AQy (te11)|

Calculation of the estimation of the state vector
and the covariance matrix of estimation errors

Ps(trs1) = Sn(teralte) ASy (tresalte) + Qu(tiga),
Prs(tre1) = R (traa|te) ASE (s |te),
K(tir1) = Prs(tip1) Pg ' (),
R(tes|tr) = Rt [tr) + K (tr1)e (),
P(titen) = Pltenalte) = K(teen) Ps(tia) K7 ()

Estimation of the covariance matrix of the system noise

Wter1) = Rltua|te) = Ry(tealti)a,

Np—1- 1
9 ZD(t) + I (tira),

I(t =
(tks1) Ng Ng

Qultirr) = (1= bp)Qu(ti)+ . ) _
—i—{Ek[K(tk+1)€(tk+1)€T(tk+1)KT(tk+1)"‘ AQu(tin) = Ng—1 (9r1)=tirr)):

. 1
Pt lten) Z BB (tenlti) = | Oltn) =)+ e Pllralti) v
1 T
— Rt |te)) (f (RT (taga|te))— —N—Q(R (trlte) ARG (t|ts)+
D T
R(trsaltr))" 1} R (trltr) AR (b)) v
R /Ny —1
Qulten) = diog (S92 Qultn)) +
Q
+AQu (tis1)]
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Calculation of the combined estimation of the state vector and the covariance matrix
of estimation errors

R(tialtir) = (P (e ter)) ™ + (P (e [te) ™) 7 (P! (e ten)) T RY (Ega )+

(P (e |tes)) R (Bl t),
Pltrslten), R (tiraltesn) and PY (tkpa[tesn), RY (bepaltin)

are found based on Adaptation block I and II, respectively.

Note that the cost function in (4) is known to have many local optima. Many algorithms
exists for this kind of problems, for example, Newton’s method and various quasi-Newton
methods, which are the local ones. When using a gradient based local optimization method,
the minimum found may not be global one, unless the initial data is chosen close enough
to the global minimum. In general, if the obtained parameters assessments give a bad fit,
there is no way to understand if the reason is either the convergence to a local minimum
or the insufficient model structure. These problems, with local minima can be solved by
using global optimization methods. The global optimization approach is used in this work
in order to find the optima of problem (4).

Stage 2. Specify the matching model (identification of unaccounted
disturbances from measurements of residual differences)

1. Calculate the residual differences A(tj) based on the estimates 0 obtained at Stage 1:
A(thrl) = S(thrl) _§1(tk+1)7 k :Oala"'aN_ 17 (8)

where

N

81(tks1) = M R(tes1lterr)), (9)

R(tr+1|tr+1) is the estimate of the state vector obtained at Stage 1.

2. Choose the following model:

, . , . A 27t . 2t
A'(tgi1) = ab + aityr + abtig + b cos ( W;“) + b5 sin (%) +

i 47Ttk; 1 i - 47Ttk 1
+cj cos ( T+ ) + ¢ sin ( T+ ) : (10)
where i = 1,...,m, m is the size of S(tgs1) (here m = 3), T is the defined value, and

estimate the unknown parameters 0 = (aj), a, ab, bi, b, ¢t cb)T, i =1,2,3 using the least
squares method [30]:

6 = (B"B)"'BTA(ty),

1t cos(Q’;fl) sin(%%) 005(4”%) sin(%%)

where B= |... ... ... .. . ..
1ty 13 cos(ZX) sin (2Z) cos (4Z) sin (4T )

3. Calculate A(tk+1), k =10,...,N — 1, taking into account the estimates 6 found by

equation (8).

4. Calculate

So(tie1) = $1(ter1) + Altynr), k=0,...,N -1, (11)
using A(ty41) and 81 (tg+1) found by equation (9).
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3. Modelling Results

As the measurement data, we take the rapid ephemeris of the Russian Global
Navigation Satellite System (GLONASS) from 01/01/2013. In this case, it takes the
satellite one revolution around the Earth to make (i.e. to pass through the different light
zones). At the initial time, we compute the velocity of the satellite on the basis of rapid
ephemeris using Everett interpolation. Estimation of the SRP model parameters (3) can
be carried out using the two-stage parametric identification procedure according to the
trajectory observations in areas of total illumination and penumbra zones.

At Stage 1, estimates of the parameters of the SRP model were found using two-
stage parametric identification procedure and Adaptation block I (denoted by 6!) and
Adaptation block IT (denoted by 11 ), as well as the multiple adaptive modifications of the
UKF (denoted by ). We calculate orbits (9) 8 (t41), 81 (tk1)s 1(tksr), k=0,...,N—1,
using adaptive modifications of UKF for the estimates 67,87, 6 found.

At Stage 2, we calculate the residual differences Af(tgy1), A (tpy1), Altrsr),
k= 0,. .,N — 1, (8) from those §(t111), §%(tpy1), S1(tx1) found at Stage 1. By
Al (tk+1) H(t11), A(tpy1) we construct model (10). We find 81 (tx11), 81 (txr1), 81(trs1)
for k=N,...,N+ M (M depends on the prediction time: 24, 12, 6 hours).

Let us construct an orbit prediction on 02/01/2013 SQ(tk_H) 88 (tr11), Sa(tger) for
k=N,...,N+ M using (11).

To assess the quality of the orbit prediction using one-stage and two-stage parametric
identification procedures, we calculate the root mean square (RMS) values of the difference
between the predicted and final orbits for 24 hours, 12 hours, 6 hours on 02/01/2013. The

results are presented in Table 1 and Table 2
Table 1

The RMS values of orbit differences between predicted and final orbits 24-h, 12-h, 6-h on
02/01/2013 (one-stage parametric identification procedure, unit: cm)

Prediction time | Satellite Radial | Along-track | Cross-track
RO1 3.14 14,01 112
24-h RO2 2,96 12,41 461
RO3 3,89 13,67 4,72
RO1 2,74 11,24 3.75
12-h R02 2,39 11,94 3,64
RO3 3,05 12,17 3,58
RO1 2,04 9,14 2,68
6-h RO2 1,99 9,84 3,02
RO3 1,87 9,44 2,94

Two-stage parametric identification procedure based on the multiple adaptive UKF
algorithm makes it possible to construct a more accurate model of satellite motion and
make a prediction of satellite motion for a given dimensional interval.

Conclusion

The proposed approach to the construction of a satellite motion model and the
prediction of ephemeris is based on a complex application of the maximum likelihood
method, the nonlinear filtering algorithm and the identification of a complex component
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Table 2

The RMS values of orbit differences between predicted and final orbits 24-h, 12-h, 6-h on

02/01/2013 (two-stage parametric identification procedure, unit: cm)

Adaptation Adaptation g/éigg\i
block I block II UKF

Satellite

Position error

Prediction time

Ra- | Along- | Cross- | Ra- | Along- | Cross- | Ra- | Along- | Cross-
dial | track | track | dial | track | track | dial | track | track

ROL | 221 | 12,13 | 3,82 | 2,18 | 11,46 | 3,74 | 1,81 | 10,02 | 3,64
24-h [RO2 [ 2,17 | 11,36 | 4,13 |2,22| 11,06 | 4,29 |[1,73]| 10,43 | 4,03
R03 | 3,06 | 12,45 | 3,06 | 2,00 | 12,04 | 3,88 | 2,66 10,22 | 3,51

ROL [ 1,87 | 10,47 | 3,06 | 1,67 | 9,99 | 3,17 |1,66| 9,67 | 208
12h [RO2 [ 2,1 | 11,03 | 3,12 | 24 | 1034 | 2,97 | 1,8 | 9,58 | 2,87
RO3 [ 1,95 | 10,88 | 2,94 | 2,09 10,06 | 3,00 | 1,78 | 10,01 | 2,65

ROL [ 1,11 | 846 | 2,19 | 1,12 | 8,07 | 2,17 | 103 | 7,87 | 189
6h [RO2 [ 1,23 9,12 | 2,67 (099 954 | 2,73 | 0,94 8,99 | 2,11
RO3 [ 1,19 | 866 | 2,12 |1,04| 8,53 | 2,46 [0,89| 823 | 2,12

of the satellite motion model. The use of the two-stage parametric identification procedure
that combines the estimation of the parameters of the SRP model from ephemerides with
the refinement of the residual accelerations made it possible to increase the accuracy of
determining the unknown parameters of the satellite motion model. It is shown that the
combined use of several adaptive filtering algorithms makes it possible to increase the
accuracy of satellite orbit prediction.
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JIBYXDTAITHA S ITPOILIEYPA IAPAMETPUYECKOII
NJTEHTU®NKAIIIN MOAEJIN ABUKEHNSI KOCMUYECKOTO
ATITIAPATA HA OCHOBE AJIATITUBHBIX MOJIU®UKAITIIT
CUTMA-TOYEYHOTO ®UJILTPA KAJIMAHA

O.C. Yepnuxosa', A.K. I'veuxocees®, U.I'. /Tanuenxo'

'Hosocubupckuit rocynapeTBenHbIi TeXHUIYecKHil yHuBepcuTeT, T. HoBocubupexk,
Poccuiickas @enepariust

2A0 <MndopManuonnbie CIlyTHUKOBBIE CHCTeMbI> nMeHn akajemuka M.D. Pemernesa,
r. 2Kestesnoropcek, Poccuiickag Peneparus

B pabore mpe/icTaBiiena HOBasl JBYXITAIIHAS [IPOIELYPa TapaMeTPUIeCKOl UaeHTH(hH-
KaIlUU MOJIEJIN JIBUYKEHUS IIEHTPa MacC KOCMUYIECKOTO alnapara. Ha mepBoM ararie mporery-
PBI € IIOMOIIBIO METOJIA MAKCUMAJILHOIO IIPABJIONO 001 OIEHUBAIOTCS IIaPaAMETPhI MOIEJIH
PAJIMAIIMOHHOTO IABJIEHUS, IIPU STOM IIOCTPOEHNE KPUTEPUS UJAEHTU(MUKAIMA OCYIIECTBIIS-
€TCsl HA OCHOBE HECKOJILKUX AJAITUBHBIX MOIM(DUKAINI HEITPEPHIBHO-IUCKPETHOTO CUTMAa~
rouegnoro dpuabrpa Kamvana. Ha BTopom srarme mponeaypsl 1Mo pe3yabTaTaM U3MepeHuit
OCTATOYHBIX PA3HOCTEH CTPOUTCSI PErPECCUOHHAST MOJIE/Ib HEYITEeHHBIX Bo3MyIeHuil. [Tory-
YEHHBIE YUCJICHHDBIE PE3YJILTATHI MPUBOJAT K 3HAUYUTEHHOMY YJIYUIIEHUIO TOYHOCTH IIPO-
FHO3UPOBAHUS TPACKTOPUU JBUYKEHHUST KOCMUYECKOTO AIapaTa.

Karouesvie ca06a: HEAURHETHAA CMOTACMUYECKAS HENPEPBIGHO-OUCKDEMHAA CUCTIEMA;
adanmusHvLl CuULMaA-MOYEYHbIl GUALD; NAPAMEMPUNECKAS UOEHMUPUKAUUA; PAOUAUUOH-
Hoe dasAeHUue; MOJEA OBUNCEHUS KOCMUMECKO20 ANNAPATNA.
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