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The weighted finite element method allows to find an approximate solution to a
boundary value problem with a singularity faster in 10° times than the classical finite
element method for a given error equal to 1073. In this case, it is required to apply the
necessary control parameters in the weighted finite element method. The body of optimal
parameters is determined on the basis of carrying out and analysing a series of numerical
experiments. In this paper we propose an algorithm for processing the results of calculations
and determining the body of optimal parameters for the Dirichlet problem and the Lamé
system in a domain with one reentrant corner on the boundary taking values from 7 to 2.

Keywords: corner singularity; weighted finite element method; body of optimal
parameters.

Introduction

Mathematical models in the form of boundary value problems with a singularity play
an essential role in fracture mechanics. The Lamé system or biharmonic equation is used
for the crack problem or the elasticity problem in a domain with a broken in the boundary.
In domains with reentrant corners at the boundary, the Stokes problem or the system of
Maxwell’s equations are used in hydrodynamics or electrodynamics. Numerical methods for
boundary value problems with a singularity were actively developed recently. For instance,
the different finite element methods (FEM) were constructed for solving of the crack
problem; among them we note smoothed FEM |1, 2|, meshless/meshfree methods |3, 4],
Extended FEM (XFEM) [5-7], field-enriched FEM [8,9], FEM on mesh with compression
[10,11].

We proposed to define the solution to boundary value problems with strong and corner
singularities as an R,-generalized solution [12-15]. The presence of the weight function in
the integral identity of the definition of the R,-generalized solution made it possible to
create a numerical method without loss of accuracy. The singularity of the solution does not
affect the rate of convergence of the approximate solution to the exact one. The weighted
finite element method (WFEM) for the boundary value problems of the second-order
elliptic equations [16], to time harmonic Maxwell equations with strong singularity [17] and
Stokes problem with singularity in a 2D non-convex polygonal domain with one reentrant
corner [18-20], and the crack problem in the theory of elasticity [21,22| was developed.

Three control parameters v, v*, § must be set to find an approximate solution by
the weighted finite element method. An algorithm for determining the body of optimal
parameters (BOP) for the crack problem was presented in [22]. An approximate solution
is found with an error that does not deviate much from the best error in the norm of the
weighted Sobolev space or the weighted energy norm when choosing control parameters
from BOP. The algorithm for finding the BOP is based on processing the results of
calculations of a series of typical problems. This approach is substantiated by the uniform
representation of the asymptotic expansion of the solution to any of the crack problem
and by the established interval for the parameter v from the theorem on the existence and
uniqueness of the solution.
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In this paper, we present an algorithm for processing the results of calculations and
determining the BOP for the Lamé system in a domain with a reentrant corner from 7 to
27 at the boundary.

1. R,-Generalized Solution and Weighted Finite Element Method

We consider a boundary value problem for the Lamé system with constant coefficients
A and p with respect to the displacement field u = (uq, us):

—(2div(pe(u)) + v(Adivu)) =£, =€, (1)

u=g9q, xe€o. (2)

Here ¢(u) is the strain tensor, f is a distributed body force, €2 is a bounded non-convex
polygonal domain with the boundary 0f) containing one reentrant corner such that its
vertex is located in the origin O(0, 0).

Let Q = {z € Q: (22 +22)"/? < § < 1} be the d-neighborhood of the point O(0,0)
in Q. We introduce a weight function p(z) that coincides in Q" with the distance to the
origin, i.e. p(z) = (2?2 + 22)/? for v € Q', and equals to § for z € Q\ Q.

Denote by WQ{Q(Q, J) the set of functions satisfying the following conditions:

a) |DMu(x)| < (6 )\ p(z))*+™ for x € Q, where m = 0,1, the constants ¢; > 1 is
independent of m;

b) [lu(x)| 1, . @) = c2, where ca = const; with the squared norm

@)y @5 = D 16 @ID™u(@)Il7, @)

Im|<1

where m = (my, my) and |m| = my + mo, and « is a real nonnegative number.

We use the notation Wy, (€, 0) for the corresponding set of vector functions.

Define R,-generalized solution to problem (1), (2) as a function u, from the set
W3 (€, 0) that satisfies the boundary value conditions on 9 and satisfies the following
integral identity:

a(u,,v) =1(v) for allv = (vq;vy) € W%V(Q,(S).
Here a(u,v) = f(2u6( ) s e(p*v) + Xdivudiv (p*v))dz, (v pr"f vdz.

The Welghted finite element method for finding an approximate R -generalized solution
to problem (1), (2) was constructed in [23]. Here we briefly describe construction of the
WFEM. B

We perform a quasi-uniform triangulation of the domain 2. Let K be the union of all
the triangles K;, © = 1,...,n; h be the maximal length of the sides of the triangles. We
refer to h as a mesh step. The vertices P;, : = 1,..., M of the triangles K are nodes of the
triangulation, {PM} = {Py,..., Py} and the point O € PM. Let P = {P,}¥=Y be the set
of internal triangulation nodes.

To each node P; € P we assign the weighted function

Q&Z:py*(l‘)(p’m izla"'7N7
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where ¢; is a linear function on each triangle K equal to 1 at the node P; and zero at all
the other nodes, v* is a real number.
We introduce the weighted vector basis {1, (z) }¥=2", where
(i(x),0),k=2i—1,
= AN ' =1,...,N.
’(pk(m) { (waz(x)>7 - 22’ ¢ [

Denote by V" the linear span {4, (2)}¥=2¥ . In V" we consider the subset V* = {v € V
v(P) =0, P € 0Q}.

In the space V", a function u” is called an approximate R,-generalized solution
of problem (1), (2) by the weighted finite element method if u” satisfies boundary value
condition (2) for the mesh nodes P; € 02 and the integral identity

a(uy, v") = 1(v")

holds for all v € V.
An approximate solution is found in the form

. ul (P Jk=20—1 |
where dy, = o~ (Pl1y2)ci o = { Epﬁgi @’ Tl o N [k )2
is integer part of the number (k + 1)/2
In contrast to the classical FEM, the weighted finite element method allows to find a
solution to problem (1), (2) with an accuracy of O(h).

2. Algorithm for Determining Body of Optimal Parameters

We need to set the parameters v, v*, § to calculate the approximate R,-generalized
solution to boundary value problem (1 ) (2 ) by the weighted finite element method with the
smallest error. There exist no theoretical methods for determining the optimal parameters
v, v*, 0, so we determine these parameters experimentally for different corners w(m < w <
27). We use data on the permissible intervals of the parameters v and v*. The admissible
values of the parameter v are in the half-interval, which is established in the existence
and uniqueness theorem of the R,-generalized solution [13]. The values of the parameter
v* are determined from the interval [0, 0,49] based on the asymptotic of the solution to
problem (1), (2) [24].

The algorithm for determining the BOP is given in [22]. We consider two model
problems (1), (2) in the domains Q) with reentrant corners w; =7+ Z(i —1),i =1,...,7

(see Fig. 1).
U RS 7 cos (€> {1—L+sm (Q)]
YT Ven 2 A1 VAR

Problem (A4;)
U Ay 1 reisin (9) lQ A cos® (9)}
2T o 2 A+ p 2|

Lamé coefficients are A = 576,923, u = 384,615, and the stress intensity factor is
Ky =1,611.
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Problem (B;)

U Kr 1 e cos b 1——/\ + sin? o + r?
YT Vo 2 A+ 2 ’

0
St (3 e ()] -t
Uy = M\/%T m(){ A—}—M (O] 9 T, }
)

The solution to problem (A;), i = ., 7 is singular. The
solution to problem (B;), i = 1,...,7 contams singular and
regular components.

In QWi = 1,..,7, we construct the quasi-
uniform meshes H; (j = 1,..,6) with the step
h = 0,062,0,031,0,015,0,0077,0,0038,0,0019. For each QW v
problem (4;), (B;) and each mesh H; we determine three N
parameters v, v*, 0 for which the relative error in the
weighted Sobolev norm is the smallest. We form the sets
of parameters TI(A“H"), TQ(Ai’Hj), TPSA“H"), Tl(Bi’Hj), TQ(Bi’Hj),
TS(B"’H") and T;7 = T,iAi’Hj)ﬂT,gBi’Hj),k = 1,2,3, at which 59(3) a® a6
the relative errors differed from the best error by no more
than 5% (6.5%), 10% and 15%. For each mesh H; the body

of optimal parameters is T/ = ﬂij T k=1,2,3. Fig-l 1. . Domains Q)
i=1,..,

3. Algorithm for Processing Calculation Results.
BOP Visualization

An approximate solution to problem (1), (2) for given initial data (coefficients, right-
hand sides of the equation and boundary value conditions, parameters h, v, v*, §) was
found using the program “Proba-IV” [25]. An algorithm and a computer program for
processing the results of calculations of a large series of problems and determining the
BOP were developed. The created program allows:

e to define the sets T,i’] = T,iAi’Hj) ﬂT,iBi’Hj), k=1,2,3, for the fixed mesh H; (j =1, ..., 6)
and the domain Q¥ i =1,...,7;

e to determine the BOP TJ ﬂz IT,;’], k =1,2,3, for each mesh H; (j =1, ...,6) and the
set of domains QW i =1,..,7;

e to visualize the sets 7,7 and the BOP;

e to create tables with intervals of control parameters included in a BOP.

The calculation results of problems (A;) or (B;) on the mesh H; for fixed parameters

0, v, V" were used as input data:

e an identifier of the calculated problem;

e a mesh step label;

e values of control parameters;

e values of the exact solution in norms of the spaces Ly(Q2), Wy (), E,(Q) and in a
seminorm W3 ,(9);

e values of the errors for an approximate solution in norms of the spaces Ly (), Wy, (€2),
E,(€) and in a seminorm W, (€);

e values of the relative errors for an approximate solution in norms of the spaces Ly(12),
Wy, (Q), E,() and in a seminorm W5 ,(Q);

e values of the approximate solution in norms of the spaces Ly(€2), Wy, (€2), E,(Q) and in
a seminorm Wy, ().

(:7)0.3
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First, we form a text file from the input data containing the value of the norm of the
relative error and the corresponding values of the parameters ¢, v, v*. For example, when
analyzing the error in the space norm W%U(Q) the data sample has the following form:

3.1555894824096118733762809e-82 ©.030936 ©.9 0.1

Fig. 2. Example of a sample data

Further, for all parameters d, v, v* from the specified ranges, a row with the smallest
norm of the relative error is selected and an array of rows is formed in ascending

order of error. Out of the entire set of rows, we select three subsets Tl(Ai’Hj ), TZ(Ai’Hj)
T4 o pPeHs) - pBes) pBeHi) ¢ which the relative errors differed from the best

error by no more than 5%, 10% and 15% (see, for example, Fig. 3). Then, the sets
Ty = T,SAi’Hj) ﬂT,gBi’Hj), k =1,2,3 are determined.

Y

+15% . +15% .

+10% . +10% .

+5% m. +5% .
0.3 0.49

N

5020

b)

+15% .
+10% .
+5% .

03

Fig. 3. (3a) the sets Tl(A5), T2(A5), TS(A5); (3b) the sets Tl(B5)7 TQ(B5)7 T3(BE’); (3c) the sets
T?,j =1,2,3 for the mesh with a step h = 0,0038

We say that the BOP is a set of parameters d, v, v* which is simultaneously included
in all 7,7 in the domains Q@ i = 1,...,7 for a fixed mesh H;(j = 1,...,6), i.e. T} =
ﬂzj 17k =1,2,3 (see, for example, Fig. 4).

At the next step, the program, by exhaustive search and comparison of the
corresponding parameters, determines the BOP. In some cases, it is possible to determine
the BOP not for all domains Q®, ¢ = 1,...,7 but for separate groups, for example, for

problems in domains with reentrant corners {180°, 210°, 240°} or {270°, 300°, 330°, 360°}.
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+15% m +15% .
+10% . +10% .
+5% m " +5% .

01 - 01 -

Fig. 4. The body of optimal parameters for the mesh with steps h = 0,015 (4a) and
h = 0,0019 (4b) together for all domains Q@ i =1,...,7

In addition, we determine the BOP at which the deviation of the relative error from
the best one does not exceed 5% and 6% (see, for example, Fig. 5). This indicates the
sustainability of the process. The error changes insignificantly with a small deviation in
the choice of parameters from the best parameters.

i
7

a)
Fig. 5. Parameter values at which the deviation of the relative error from the best one does
not exceed 5% and 6% for all domains Qi = 1, ..., 7 on the mesh with a step h = 0, 0038

Various sets of parameters and the BOP visualization was carried out using the
“gnuplot” program [26]. The input text file contained the values of parameters §, v, v*
on each line. These parameters determined the coordinates of a point in three-dimensional
space. The error ranges were indicated in the executive file for correct visualization.

e The parameter v* was sequentially assigned the values 0,0,0,1,0,2,0, 3,0,4,0, 49.

e For each value of v* and 6 = h, 2h, 3h, ... an interval of parameters was chosen for which
the approximate solution error norm deviated from the minimum error by no more than
a given limit value.

e For each value of v* intervals of § were determined with the same intervals of v.

As a result, the table was formed (see, for example, Table).

The choice of the optimal parameters for the weighted finite element method provides
the creation of codes for finding an approximate solution with high accuracy for problems
of elasticity theory with a corner singularity.
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Table
Table sample
Percent of error 0 v v*
5% 1h-5h | 0,6...1,4 | O
1h 0,7..3,1 ] 0,1
6.5% 1h-5h | 0,5...1,5 | 0O
1h 0,5...3,3 ] 0,1
10% 1h-5h | 0,1...1,8 | 0

1h | 0.38 |01
h [04..2902
5% Ih5h| 0.29 | 0

th | 0.43 |01
1h | 0..39 |02
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AJITOPUTM OBPABOTKMU PE3VYJILTATOB BEIYMCJIEHUI
AJIA OIIPEAEJIEHNA TEJIA OIITUMAJIBHBIX ITAPAMETPOB
B BECOBOM METOAE KOHEYHbBIX 9JIEMEHTOB

B.A. Pyxasuwnuxos', /I.C. Ceaesnes', A.A. I'ycetiros
'Brrancmrensuniit nentp JlanbHeBocTounoro otenenus PoccuiicKoil akajeMun HayK,
r. Xabaposck, Poccuiickass @enepartiust

BecoBoit MeTo1 KOHETHBIX 97IEMEHTOB MTO3BOJISIET HANTH MIPUOJIMKEHHOE PeIlleHne Kpae-
BOIT 331a4H ¢ CHHrYJIIpHOCTEIO B 108 GBICTpee KIIacCHIecKoro MeTona KOHEIHDIX 9IEMEHTOB
IpH 33JaHHOI TorpensHocTy pasHoil 1073, IIpu 3TOM Tpebyercs IPUMEHATH HeOOXOIUMbIE
VIIPABJSIONIE TTAPAMETPBI B BECOBOM METOJI€ KOHEYHBIX JIEMEHTOB. 1€J10 ONTHMAJbHBIX
ImapaMeTpPoB OIpeesisieTCsl Ha OCHOBE IPOBEJIEHNST U aHAJIM3a CEPUM UUCJEHHBIX YKCIIePH-
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HOro otjesiennsi Poccuiickoit akajemun Hayk (1. Xabaposck, Poccuiickas Dejeparust),
arif.99.99.arif@gmail.com.

Hocmynuna 6 pedaxuyuro 21 pespanrs 2022 e.

Becrauk FOYpI'Y. Cepus «MareMmaTudecKoe MoOAeJIMPOBaHUE 79
u nporpammuposBanues> (Becruuk FOYpI'Y MMII). 2022. T. 15, Ne 4. C. 71-79



