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In this paper, we study the problem of boundary control and final observation for
one degenerate mathematical model of motion speed potentials distribution of filtered
liquid free surface with the Showalter—Sidorov initial condition. The mathematical model is
based on the degenerate Boussinesq equation with an inhomogeneous Dirichlet condition.
This model belongs to the class of semilinear Sobolev-type models in which the nonlinear
operator is p-coercive and s-monotone. In the paper, the problem of boundary control and
final observation for a semilinear Sobolev-type model is considered and conditions for the
existence of a control-state pair of the problem are found. In applied studies of a research
problem, it is allowed to find such a potentials distributionof filtered liquid free surface, at
which the system transitions from the initial condition to a given final state within a certain
period of time T'.
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Introduction

The control of various processes is a key problem on a global scale, where scientific and
technological advances are becoming an increasingly important role in people’s daily lives.
It is associated with areas including industry, transportation, energy, medicine, and many
others. The implementation of effective process control requires a wide range of knowledge
in the field of science, technology and control. In this regard, the constant development and
improvement of methods and technologies for managing access to processes is a strategic
problem for the development of science and technology in general.

The fundamental problem of regulation is to identify the influences on a system that
results in a controlled change in the system’s state. Additionally, the type of control
implemented is a significant factor that influences the quality of the transient process. Keep
in mind that the phrase “quality of the transient process” encompasses various parameters,
like performance. For instance, the transition process duration (speed optimization) could
serve as an assessment criterion for the control system. The examination of such problems
acted as a prototype for the optimal control theory issue, where the control parameter
refers to an external force acting on the system.

We highlight J.-L. Lions and A.V. Fursikov as significant contributors to the field of
optimal control theory. For instance, the paper [1] systematically examines the optimal
control problems associated with partial differential equations. In another notable study,
A.V. Fursikov’s work [2| demonstrates the existence of a solution to the problem of model
control based on the Navier-Stokes and Euler equations. During the initial investigations,
G.A. Sviridyuk and A.A. Efremov studied the optimal control problem for linear Sobolev
type equations [3]. Subsequently, this problem was explored in various contexts employing
nonlinear Sobolev type equations [4].

Another important type of control, i.e. start control, arises in a situation where the
control parameters enter the initial conditions. Usually, in start-up control problems, the
initial state of the system serves as the control, and the objective functional is the final one,
i.e. only the final state of the system (final observation) is observed. In certain situations, it
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is crucial to observe the status of the managed system during intermediate intervals, while
approximating the difference of current properties, such as velocity, temperature, pressure,
etc., from their desired values. This problem has been the subject of many works: in [5]
the existence of a solution to the problem under study for the Barenblat—Gilman model is
proved; in [6] this type of control is considered for fluid filtration model.

Note also that the control can enter not only into the right-hand sides of the equations
of state or initial conditions, but also into the boundary conditions. The term boundary
control pertains to the identification of control functions, which facilitate the transition of
the system from an initial state to a predetermined final state over a defined time period of
T. Typically, boundary control is utilized in scenarios involving rod oscillation or mass and
heat transfer, such as regulating the heat exchange process where controlling the change
in heat flux entering the designated area leads to substantial changes. The existence of
a boundary control for both parabolic and hyperbolic systems is presented in [7]. The
approach developed by J.-L. Lions is applied to understand different physical processes as
described in works such as [8,9].

The purpose of this work is to study the problem of boundary control and final
observation (search for a pair of states (2(1"),)):

‘](x(T)vu) = 19||$(T, ')_xd(')lep(D)+(1_19)Hu_xFHp 1 — infv CAS (07 1)7 (1>

Lp(0,T;W, P ()

for the mathematical model of motion speed potentials distribution of filtered liquid free
surface, which is based on the Boussinesq equation

(A= A)a = A(lz|"2) = f, p > 2, (2)
with the Showalter—Sidorov initial condition
(A =A)(x(0) —20) =0 (3)
and the inhomogeneous Dirichlet condition
x(s,t) = u(s,t), (s,t) € I' x [0, 7). (4)

For p = 3, equation (2) simulates the motion of the free surface of a liquid filtering in a
porous medium [10]. For n = 2, 3, the desired function x = x(s,t) (s € D, D is a bounded
domain in R™ with the boundary T' of the class C*°, t € [0,T]) describes the change
in the free surface motion speed potential, and the given function f = f(s,t) describes
fluid sources, the parameter A\ € R characterizes the rock [11]. Numerous research papers
are dedicated to examining the possibility of solving initial-boundary value problems for
equation (2). One such example is the work of [12], where they establish the existence and
uniqueness of a classical solution to the first boundary value problem for equation (2).
The article [13] explores equation (2) featuring a non-linear, non-constant, non-monotone
source and demonstrates the possibility of solving the first initial-boundary value problem.
Meanwhile, [14] provides a numerical solution algorithm for the generalized Boussinesq
equation, which characterizes the movement of the fluid surface filter within a range of
finite depth. In functional (1), the given functions z,4(s) and zr(s,t) characterize the
required state of the system at the final moment of time and the fixed state of the system
at the boundary, respectively.

1. Mathematical Model

Next, we define function spaces as follows: H = (W, (D), < -,- >), § = Ly(D),
B = L,(D), moreover, B* = (L,(D))* and H* = (Ly(D))* are dual spaces with < -, >.
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With this definition of $* and B*, there are dense and continuous embeddings [11]:
BoHoH—H =B

Consider the homogeneous Dirichlet problem for an operator (—A): —Apr = Ak, @k €
o1
W,(D). Note also that @p=(—A)"1p; = % The investigation is based on the theory of

solvability in a weakly generalized case of the Showalter—Sidorov problem
A(z(0) —29) =0

for the semilinear equation
Az, + B(x) =g

in the case the operator A is linear, symmetric, continuous and non-negative definite, the
operator B is p-coercive and s-monotone. Let’s put

95
< g,v>= /fﬁds—/]u]pQu—vdS, v € B.
on
D T

Define the operators A and B as follows:

(Az,y) = /(M?}Hy)d& T,y €N
D

(B(x),y) = / ]x\p_Qxyds, x, y € B,
D

where g is solution of the homogeneous Dirichlet problem in the domain D for equation
—Ay = g [15]. The paper [11] shows the properties of the operators A and B: for any
A > — )y, the operator A € L (M, N*) is self-adjoint, Fredholm, and non-negative definite;
the operator B € C™(B,B*) is s-monotone and p-coercive. Next, let’s consider the case
of A > —\; and consider the set

9, if A> =\

COimA:{ {ren:(x,p1)=0} if A\=—-)\

and
Boif A > —A\q;

M= foe®B: [lapteo ds+ [ Jup2ulllas = [ fods,} i A= —A.
D T on D

This set is a Banach C'-manifold [15], which is diffeomorphic, except perhaps for the
zero point, to the subspace {z € L,(D) : [xpids = 0} under the condition that
D
95
(f ]u]pﬁu%deL ff@ﬂs) does not depend on ¢ in the case A = —\;. The form in
r n D
which we present the estimated solutions to the problem (2) — (4) is

wr(s,t) = > ci(t)gi(s), k> dim ker A, (5)

=1
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where the coefficients ¢; = ¢;(t), i =1, ..., k, are determined by the system of equations
< Az + B(x), p; >=< f,p; > i=1,...,k, (6)

and the conditions
< A(z(0) —xz0), 0, >=0, i=1,. k. (7)

Consider the space
X={x|xre€ Ly(0,T;coim A)NL,(0,T;B)}.

Before formulating the theorem on the existence of a solution (2) — (4), it should be noted
that we are considering a weak generalized solution the Showalter—Sidorov problem for the

mathematical model of motion speed potentials distribution of filtered liquid free surface,
described in [11].

_1
Theorem 1. Let u € Ly(0,T;W, *(I')), f € Ly(0,T; W, (D)), p>2, A > —=X. Then
Vg € B and T > 0 there exists the weak generalized solution x € X to problem (2) — (4).

Proof. The proof of Theorem 1 is based on the monotonicity method and the phase space
technique, which necessitates creating a priori estimates. In coim A we introduce the norm
| x |?>=< Az, z >. It involves utilizing the Banach—Alaoglu theorem and transitioning to
the weak limit to demonstrate that the required solution is found. The proof is analogous
to that of the case of the homogeneous Dirichlet condition [4]: the equation (6) multiplied

by c;, i = 1, k, and integrate by (0, )

t

/ /(()\ — A) @y + |zp)P 223 ds | dr —/ /kads dr — / lug [P~ 2uka—ds <
T

0 D

oz
/ I 152 1 i 7 - / = s

The difference is only in the construction of the a priori estimate

|22+ [ 2 |17, 0.rm) S C py Hzol*+ [ "

[waly 5
Lq(0,7;W Lp(0,T;W,, ’1)(F))

It is worth noting that Theorem 1 indicates how Galerkin approximations (5) approach a
general weak solution to problem (2) — (4).

m
2. Problem of Boundary Control and Final Observation

We now shift our focus towards investigating the problem of boundary control and
final observation concerning the motion speed potentials distribution in a filtering liquid.
It is necessary to construct the control space

U= {L,0,T;W, "(I)): /|u|p_2u%d5 + / f1ds does not depend on t at A = =\ },
n
D
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and choose a non-empty, closed, convex set {,q4 C Y. The solution of problem (1) — (4) is
to find a pair of functions (#(7"), @) that satisfies the following condition:

J(@(T),u) = inf J(x(T),u),

(2(T),u)

where the pair (z,7) € X x 4 satisfies (2) — (4). By the set of admissible pairs 2 of
problem (1) — (4) we mean the set of such pairs (x;u) satisfying problem (2) — (4) and
J(z(T),u) < +o0. If Uyg = @, then for all u € L,y C U the set of admissible pairs (z(T), u)
is not empty.

Theorem 2. [16] Let the conditions of Theorem 1 be satisfied. Then Vg € B and 7" > 0
there exists the solution (Z(7'),u) to problem (1) — (4).

The proof of the Theorem 2 is based on the monotonicity method, compactness
method, Mazur’s theorem, passage to the weak limit and is carried out similarly to the
proof presented in [Theorem 2.1, 16].
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NCCJIEJOBAHUNE I'PAHVNYHOI'O VIIPABJIEHVA 1 PUUHAJIBHOI'O
HABJIIOJIEHUS B MATEMATNYECKOM MO/JIEJIN
PACITPEAEJIEHN A ITOTEHIIMAJIOB CKOPOCTU ABUKEHWN A
CBOBO/JIHON ITIOBEPXHOCTU ®UJILTPVIOIIIENCH XKNJIKOCTU

K.B. Ilepesosuuxosa', H.A. Manaxosa'
TOxkm0-Ypasbekuit rocyapeTBenHbIi yHIBEPCUTET, I. e Ia0nHcK,
Poccniickasa ®enepariust

CraTbst OCBSIIIEHA UCCIEJOBAHNIO 33/[a91 IPAHNIHOIO YIIPABJIEHUsSI 1 (DUHAJIBHOTO Ha~
OJIFOJIEHUsT JIJIsT OJHOU BBIPOXKJIEHHON MaTeMaTHIeCKOW MOJIE/M PacCIpeesieHus IOTeHIra-
JIOB CKOPOCTH JBUXKEHUSI CBODOTHON MOBEPXHOCTH (PUIBTPYIOMIENCS KUTKOCTH C HAUAJIBHBIM
yeqosueM Illoyonrepa — CuymopoBa. Maremarudeckast MOJIeb 6a3UpyeTcss Ha BBIPOKJICH-
HOM ypaBHeHHu Byccunecka ¢ meognopomubiM ycioBuem upuxite. Ucciemnyemas Momesnb
OTHOCUTCA K KJIACCY TOJTYJIHHEHHBIX MOJeIeil CODOIEBCKOrO TUIA, B KOTOPBIX HEJIMHEHHDII
OTIEPATOP SBJISETCS P-KOIPIUTUBHBIM U S-MOHOTOHHBIM. Hall/IeHbI yCIoBUS CYIIeCTBOBAHUS
Iapbl yIIPaBIeHUE-COCTOSTHIE U3yIaeMOi 3a/1a4u. B MpUKIaHbIX UCCIICIOBAHUSX PEIICHUE
JIAHHOM 3a/1a9M [T03BOJISIET HAXOUTb TaKOE PACIpEesIeHIe TOTEHIINAI0B CKOPOCTU (huiIb-
Tpylomieiics KUJKOCTU, IIPU KOTOPOM IIPOUCXO/IUT IIePEeX0/ CUCTEMbl U3 Ha4YaJIbHOI'O COCTO-
JHUS B 33/IaHHOE KOHEYHOE COCTOSIHHE C TeUEeHUEM OIIPEJIeJIEHHOIO IIepuojia BpeMenn 1.

Karouesvie caosa: 3a0a4a epanuvho20 Ynpasierus U GUHAADHO20 HAOAI00eHUA; Ma-
MEMAMUYECKAA MOOEAD PACTPEIENEHUS TOMEHUUANOE CKOPOCTIU JGUNCENUA C60000HOT NO-
BEPTHOCTNU, PUALMPYIOWETCA HCUIKOCTNU; YPABHEHUS CODONEBCKO20 TMUNG.
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