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TRAVELLING BREAKING WAVES
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We study a mathematical model of coastal waves in the shallow water approximation.
The model contains two empirical parameters. The first one controls turbulent dissipation.
The second one is responsible for the turbulent viscosity and is determined by the turbulent
Reynolds number. We study travelling waves solutions to this model. The existence of an
analytical and numerical solution to the problem in the form of a traveling wave is shown.
The singular points of the system are described. It is shown that there exists a critical value
of the Reylnols number corresponding to the transition from a monotonic profile to an
oscillatory one. The paper is organized as follows. First, we present the governing system of
ordinary differential equations (ODE) for travelling waves. Second, the Lyapunov function
for the corresponding ODE system is derived. Finally, the behavior of the solution to the
ODE system is discussed.

Keywords: shallow-water equation; Lyapunov function; Reynolds number; travelling

wave solution.

Introduction

The theory of surface gravity waves is a classical branch of hydrodynamics [1-4].
However, the modelling of the wave breaking remains a difficult subject [5-7]. We study a
recent model of breaking waves proposed in [8,9]|. The equations are derived by using
the depth averaging of the equations for mass, momentum and Kkinetic energy. The
model describes the wave breaking phenomenon by introduction of a new variable that
is enstrophy (squared vorticity) following the works [10-12]. However, compared to the
above mentioned papers, the enstrophy generation is not related to the shock formation,
but rather to the turbulent dissipation. The model is mathematically simpler than two-fluid
models describing a fine structure of the vorticity formation and propagation developed
further in [13] and generalized to the case of stratified fluids in [14].

The model contains two empirical parameters. The first one controls turbulent
dissipation. The second one is responsible for the eddy viscosity and is determined by
the turbulent Reynolds number. We study travelling waves solutions to this model.

The paper is organized as follows. In Section 2, we present the governing system of
ordinary differential equations (ODE) for travelling waves. In Section 3, the Lyapunov
function for the corresponding ODE system is derived, and in Section 4 the behavior of
the solution to the ODE system is discussed.

1. Problem Statement

The following system of equations is established in [8]:
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Here h is the water depth, U is the depth averaged horizontal velocity, ¢ is the gravity
constant and ¢ is the enstrophy variable. The system depends on two parameters: Re that
is the Reynolds number and C) that is the turbulence dissipation parameter. In system
(1), the first equation is the conservation of mass, the second one is the conservation of
momentum, and the third one is the enstrophy equation. The “dot” means the material

derivative:
. oh oh - 0 0\ :

We are looking for travelling wave solutions to (1). Let us introduce the travelling wave
coordinate £ = x — Dt. Here D = const is the wave propagation velocity. The time and
space derivatives are transformed as follows:

0 d

or  de’
ot d¢

From the mass conservation equation we get: h(U — D) = m. Without loss of generality,
we can suppose that m > 0, i. e. the flow propagates through the front from left to the
right. Then

h=(U— D)I,
and
o™ (Y
h \ h
, dh ) ) .
where h' = o Using these expressions, we reduce the momentum equation to the

following form:

du d (gh®> 5  h*m?® (K d (4 5 _dU
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It is important to note that system (1) is invariant (i.e. it retains its form) under the
Galilean transformation:

r=2+ Vi,
U=U+V,
t=t
with
V = const.

Therefore, without loss of generality, we can consider the case where the wave speed of
travelling waves is D = 0, i.e. the solution is stationary. Integrating once with respect to
&, we obtain
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This equality is equivalent to the following equation:

(Q')/_ 31 3 3gh  3h% 12@/@(@)

h hm2  h2 2m2  m2  Rem h

For convenience, we introduce the variable ) by h = e®?. The equation of momentum can
be written as follows:

3 _ _ 39 3p 12P\/p
pr—>t 0 _3,2_ 29 @_ 5P 20_XTVY o
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Q =P.
The equations for enstrophy becomes:
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It is easy to show that the above equality is equivalent to

3
PG o Ch o
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Therefore, system (1) can be written as

Q =P,
3l ) 3¢ 30 12P /%
Q 2Q Q _ ¥ 2Q _ Q
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Indeed, we can check that
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Fig. 1. The graph of the potential energy W (Q)

Let us present the Hamiltonian as the sum of kinetic and potential energy

2

H(@Q P) ="+ W(Q),

where 5 3 a]
_ -2Q 9 @ -Q
W(Q) = —56 + 2—777,26 + We .
The graph of the potential energy W (@) is shown in Fig. 1. We introduce the critical
points 1 and @, of W(Q):

ow

@\Qd)l =0,
and

ow

%\chz =0

Without loss of generality, we can assume that W(Q1) = 0. Indeed, if W(Q,) = W; # 0,
we can replace W (Q) by

3 3g 3
W(Q) = —56 2Q + ﬁ@Q + W@ Q_ Wl.

To justify the behaviour of W (@) shown in Fig. 1, we formulate the properties of W (Q)
in the following proposition.

Proposition 1. Let Q1 < Q. (or, equivalently, hy < h.) be the critical points of W(Q).
Then |Uy| > /gh1 and |U.| < \/gh.. It means that the flow ahead of the front (at h = hy)
2

oW
is supercritical and behind the front (at h = h,) is subcritical. Moreover, TQ?‘Q:Ql <0,

PW

Proof. Denote by M; = ((Q1,0) and M, = (Q.,0) the singular points of system (4). Then

ow 3 gexp(2Q)
2
O = 2 exp(-Q) (m?exp(~@) + L5 ).
oQ m 2
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Replacing again exp(Q) = h, we get that in the critical points

2 2
oW s (g mt N
oQ  m2h \ 2 h

In particular, this implies
h?  m? h?  m?
& 4+ — = & 4+ —
2 hy 2 h.
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h, —h )
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Then h, > hy and T o 5 imply that
ghe  ghi m? - m?
2 2 hihy A2’

which implies |U,| < v/gh.. Finally, the inequality
ghe  ghi m? m?

2 2 b, R

ghy

implies |U;| > v/ghi. The inequalities for the second derivatives are direct consequences
PW

90?2 lo=, = —sign(U? — gh;), i = 1, The proposition is

of the inequalities because sigh——

proved.

O
This proposition establishes the behaviour of the function W (Q) shown in Fig. 1.

2. Lyapunov Function

The Lyapunov function for system (3) is derived from the energy equation. Let us
write down the energy equations [§]:

Ohe 0 s gh*  hh ou \\
W+%<hU€+U<hg0+7+7_ VTh% =—h<e>.

U? n? h? h
Here e = - + 790 + 5 + g? For travelling wave solutions the energy equation takes

the form: ,
m3 (h'\? N ml N mph? N ghm — m*\ h<e>
6 \ % n 2 2 22 ) :

C, . .
where < ¢ >= 7h2<,03/ 2. Therefore, the Lyapunov function for system (3) is

3

m m
L(vaﬂp)szﬂ—l-mle Q4 290 2Q_|_g2 @ 76—%)‘

The graph of the Lyapunov function is shown in Fig. 2.
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Fig. 2. The graph of the Lyapunov function

3. Existence of Travelling Wave Solutions

Denote 2 : ¢ = Q2. Then system (3) takes the form

Q =P
3 o 3¢ 302 12P|0)]
A O 2Q _ Q _ 2Q _ Q
P= m2 9 . 2m2 " m2 " mRe (4)
o — 4mP sgn(Q)efQ B C’TQ|Q|6Q.

Re 2m

As in the case of system (3), there are two singular points with the same properties as in
the case of simplified system (3). Denote them by M;(Q4,0,0) and M,(Q.,0,0).

Linearisation system (4) gives us only the information on (Q, P), that is we know that
locally (Q — @1, P) behaves as follows:

(Q - QhP) ~ (av b)e)\E’

where the eigenvector (a, b) and the eigenvalue A are the same as in the system with 2 = 0.

Let us find them. Without loss of generality, we consider the case when > 0. System (4)
has the form

Q' =P,
31 3¢ 302 12PQ
I ST Q9. —2Q _ Q _ 2Q _ Q
oo ZITLQ]@D? ” .02 277126 m?2 ¢ Rem € (5)
m
Q= Q_ T @

Re ¢ 2m
We linearize system (5) at the point M;(Q1,0,0). Then the first two equations are

separated to give the system
/
(%) -1 (%),
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where

0 1
A= (—3—92te + 3e~2 O) ‘

The characteristic equation of the matrix A is defined by

—-A 1

’A - )‘E‘ = '_%te + 3672@1 -\

0

The eigenvalues are

3
A = \/——%te + 3e2@1
m

and

3
Ay = —\/——92(2@1 + 3e2@1,
m
Then Proposition 1 implies that

3
— 29 6@ 437201 5,
m

therefore \y > 0 and Ay < 0. This corresponds locally to the saddle point: there
exist one-dimensional stable and one-dimensional unstable manifolds. The corresponding

eigenvectors are
1 1

Now, let us look for  in the form:  ~ we**, where p and w are found as functions of a and

b = aA. Obviously, in the leading order, we have from the third equation: w ~ %e‘Ql
and p = 2. Then we can represent the solution in the form

Q - Ql ~ &€>\1§7

P ~ al eMé, as & — —o.
0 o Ama®A Qi p2ng
Re )

This asymptotic behaviour means that one enters (when ¢ is increasing from —oo) at the
point M;(Q1,0,0) into the compact domain shown in Fig. 2 of the surface L = 0 along
the unstable manifold which is degenerate (€2 is decreasing much more rapidly compared
to P, Q — @y as £ — —00). When £ — oo, the solution approaches the point M, (Q,0,0)
as & — +o0.

Now consider system (5) at the point M, (Q.;0;0). Perform the linearization at
M, (Q4;0;0) and get the eigenvalues and eigenvectors in the form:

3 3
m m

2_(1) (1
1 AT? 2 )\; .

3
— 29 @ 4 36729 < ),
m

and

Proposition 1 implies that
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therefore A] and A3 are imaginary complex numbers. Since A}, = ik, k € R, the singular
point of M, (Q.;0;0) is a center point considered in the plane of P, Q)-variables. However,
since L is the Lyapunov function, the solution tends to the state M,, i.e. the fixed point M,
is asymptotically stable. For a fixed value of C,., the solution behavior in the neighborhood
of the point M, (Q.;0;0) depends on the Reynolds number. For large Reynolds numbers,
it is oscillatory (the case of low dissipation), for small Reynolds numbers it is monotonic
(the case of large dissipation). Now we fix the values C, = 0,48, hy =1, m =4, g =9,8.
The critical value R = R, =~ 0,71 corresponds to the transition from a monotonic profile
to an oscillatory one (see Figs. 3 —5).
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Fig. 3. R=0,1< R, ~ 0,71 and C, = 0,48 Fig. 4. R=R.~ 0,71 and C}, = 0,48
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Fig. 5. R=10> R, and C,. = 0,48

Conclusion

In this paper, the problem of modelling breaking waves in shallow water is considered.
The existence of an analytical and numerical solution to the problem in the form of a
traveling wave is shown. The singular points of the system are described. It is shown that
there exists a critical value of the Reylnols number corresponding to the transition from
a monotonic profile to an oscillatory one.
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JABN2XKYIHINECA PASBNBARIIINECA BOJIHBI
H.M. Kowxapbaes'>

MueruryT MaTemMaTHK 1 MaTeMaTHYeCKOro Mojeauposanusd, I. Anmarsl, Kazaxcran
?Kasaxcknit Hanmonanbusiit Yuusepcurer un. Ann-®Papabu, . Anvarer, Kazaxcran

Uccienyercsa maTemaTnyaeckas MOJEIb IPUOPEKHBIX BOJIH B IPUOJIM2KEHUN MEJIKON BO-
bl Moziesib COIEPKUT Ba SMIUPUIECKUX mapaMerpa. [lepBoril KonTposmpyeT TypOy/IeHT-
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HYIO JECCHIAImio. Bropoit orBedaeT 3a TypOy/JIEHTHYIO BSI3KOCTb U OIpeessercss Typoy-
JIEHTHBIM 4ucjioM Peitnosibica. Mbl u3ydaem perreHust 6erymux BOJH JIJIsl 9TON MOJIENIH.
[TokazaHo cyIiecTBOBaHME AHAJUTUIECKOIO M YUCJIEHHOIO PeNieHus 3aJa9u B Buje Oery-
mieit Bosiabl. Onmcanbl 0cobble TOYKN CHCTEMBI. [10Ka3aHo, YTO CyIIECTBYeT KPUTHYECKOE
3HaveHne dncia PeifHosica, COOTBETCTBYIOIIEE IEPEXO/y OT MOHOTOHHOIO TPOMUIISA K KOJIe-
baresibHOMY. Pabora opranm3oBaHa CJIeIyIOmM 00pa30M. Bo-1epBhIX, MbI IIPEICTABIISIEM
OCHOBHYIO CHCTeMY OOBIKHOBEHHBIX nuddepenimaababix ypasuenuit (OLY) s Gerymmx
BOJTH. Bo-BrOphIX, BRIBOUTCH dyHKIM JIsdmynoBa s coorBercrByfomeii cucrembr OJ1Y.
Haxkomer, obcyxkmaercs nosejenune pemterns: cucreMmbl OJ1Y.

Karoueswie caosa: ypasrenue meaxols 60dv; dynkuyus Jlanynosa; wucao Petinoavdca;

pewenue be2ywets 60AHbL.

Hyp6osn Maxcerbaesuu Komkapbaes, kadeapa MaTeMaTHIeCKOro W KOMIIHIOTEPHO-

ro MojeJnpoBaHns, VHCTUTYT MaTeMaTHKd U MaTeMaTHIecKoro MopeaumpoBanusi; Ka-
3aXCKUl HAIMOHAIBHBIN yHUBepcuTeT uM. ajib-Papabu (r. Anmars, Kazaxcran), nurbol-
koshkarbaev@mail.ru.
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