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We consider the one-armed bandit problem in application to batch data processing if

there are two alternative processing methods with different efficiencies and the efficiency of

the second method is a priori unknown. During the processing, it is necessary to determine

the most effective method and ensure its preferential use. Processing is performed in batches,

so the distributions of incomes are Gaussian. We consider the case of a priori unknown

mathematical expectation and the variance of income corresponding to the second action.

This case describes a situation when the batches themselves and their number have moderate

or small volumes. We obtain recursive equations for computing the Bayesian risk and regret,

which we then present in an invariant form with a control horizon equal to one. This makes

it possible to obtain the estimates of Bayesian and minimax risk that are valid for all control

horizons multiples to the number of processed batches.

Keywords: one-armed bandit; batch processing; Bayesian and minimax approaches;

invariant description.

Introduction

We consider the one-armed bandit problem, which is a special case of the two-armed
bandit problem (see, e.g., [1, 2]). The name originates from a slot machine with two
arms (in what follows, called actions), each choice of which is accompanied by a random
income of the player. The goal of the player is to maximize his/her total expected income.
Distributions of incomes depend only on the currently selected actions, are fixed during
the game but the player does not have a complete information about them. In particular,
a one-armed bandit occurs if the characteristics of only the first action are a priori known.
The problem has numerous applications in behavior modelling [3], adaptive control in a
random environment [4], medicine, internet technologies, data processing [5, 6].

Formally, Gaussian one-armed bandit is a controlled random process ξn, n =
1, 2, . . . , N , which values are interpreted as incomes, depend only on the currently selected
actions yn (yn ∈ {1, 2}) and in the case of choosing the second action (i.e., yn = 2) have a
Gaussian distribution density

fD(x|m) = (2πD)1/2 exp
(

−(x−m)2/(2D)
)

,

where m = E(ξn|yn = 2), D = D(ξn|yn = 2) are the mathematical expectation and
the variance of one-step income provided that the second action is chosen. In the case of
choosing the first action, the mathematical expectation m1 is known and, without loss of
generality, is zero (otherwise, one can consider the process ξn −m1, n = 1, 2, . . . , N). The
knowledge of the variance D1 = D(ξn|yn = 1) is not required because it does not affect the
achievement of the control goal. So, considered one-armed bandit is completely described
by the parameter θ = (m,D), which value is assumed to be unknown. However, the set of
parameters Θ = {(m,D) : |m| ≤ C < +∞, 0 < D ≤ D ≤ D < +∞} is known.
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A control strategy σ determines, in general, the random choice of the action yn+1

at the time point n + 1 depending on the entire known history of the process. However,
instead of the whole history, one can use sufficient statistics, which in considered case
are the cumulative income and s2-statistics for the application of the second action. The
cumulative income and s2-statistics for the application of the first action are not required
because corresponding mathematical expectation of a one-step income is known.

Let’s define a regret. If the parameter was known then one should always choose the
action corresponding to the larger of the mathematical expectations of the incomes 0 and
m. The total expected income would thus be N max(0, m). In the case of choosing the
strategy σ, the total expected income is less than the maximum one by an amount

LN (σ, θ) = N max(0, m)− Eσ,θ

(

N
∑

n=1

ξn

)

, (1)

which is called a regret and is caused by incomplete information. Here Eσ,θ is a sign of the
mathematical expectation according to the measure generated by σ and θ. Note that the
regret for the shifted process {ξn −m1} is the same as for {ξn}.

Let’s explain the choice of a normal distribution of incomes. We consider the problem
in the application to batch data processing if there are two alternative processing methods
with different efficiencies. In batch processing, the data is divided into equal batches,
the same processing method (action) is applied to all the data in the batch and the
cumulative numbers of successfully processed data in the batches (incomes) are used for
the control. By virtue of the central limit theorem, these incomes have approximately
Gaussian distributions if the batch sizes are large enough. And an important property of
this approach in optimizing big data processing is that it almost does not increase the
maximum regret if the number of batches is large enough. For example, it is shown in [7]
that in the case of splitting data into 50 batches, the maximum regret grows by only 3%
compared to its maximum value corresponding to the optimal processing. Note that first
batch processing was offered for the treatment of patients with alternative drugs. Since it
takes a considerable time for the result of treatment to manifest itself, it was proposed to
first give all the drugs to sufficiently large test groups, and then, according to the results
of testing, the best drug to all remaining patients. For an overview of the results of this
approach and references see, e.g. [8].

Let a prior distribution density λ(θ) = λ(m,D) be given on the set Θ. We assume
that the conditions

∫

Θ
m− λ(θ)dθ > 0 and

∫

Θ
m+ λ(θ)dθ > 0 are met; otherwise, the more

profitable action is a priori known. We use here the standard notations m+ = max(m, 0),
m− = max(−m, 0) and denote dθ = dmdD. The averaged regret is

LN (σ, λ) =

∫

Θ

LN (σ, θ)λ(θ)dθ. (2)

Bayesian and minimax risks are

RB
N(λ) = inf{σ} LN (σ, λ),

RM
N (Θ) = inf{σ} supΘ LN(σ, θ),

(3)

the corresponding optimal strategies σB and σM are called the Bayesian and the minimax
strategy. Bayesian approach allows one to find Bayesian strategy and Bayesian risk for any
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prior distribution by solving the recursive Bellman-type equation. Its disadvantage is the
lack of clear criteria for choosing this prior distribution. The advantage of the minimax
approach is its robustness, i.e., the fulfillment of the inequality LN(σ, θ) ≤ RM

N (Θ) for all
θ ∈ Θ. Moreover, an asymptotic theorem, providing the estimate of the minimax risk of the
order of N1/2, is well-known [9]. However, there is no a direct method for finding minimax
risk and minimax strategy. To find them, the main theorem of game theory can be used,
according to which the minimax risk is equal to the Bayesian one computed relative to the
worst-case prior distribution at which the Bayesian risk reaches its maximum. And the
minimax strategy coincides with the corresponding Bayesian one. In more detail, using
the main theorem of the game theory is presented in [7, 10].

The one-armed bandit problem was first considered in [11, 12] in the Bayesian setting
for a Bernoullian two-armed bandit which incomes take the values 0 and 1. In [11], a
recursive algorithm for finding Bayesian strategy and Bayesian risk was described. The
asymptotic properties were established in [12]. In [11], the following intuitively clear
property of the Bayesian strategy was proved: since the application of the first action
does not provide additional information, once selected, it will be applied until the end of
the control. This property also holds true in the case of a Gaussian one-armed bandit (see
[7, 10, 13]). It also remains true in the statement considered in section 1. The prove is
similar to presented in [7, 10, 13] and is therefore omitted.

Let’s indicate what is the difference between the considered approach and the one
presented in [7, 10]. In [7, 10], the case of a priori known variance is considered, which
takes place if the amount of data is large. Then the variance can be estimated when
processing the first batch. Since regret changes little with a small change in variance, the
obtained estimate can be used for control. But if the amount of data is moderate or small,
then the variance estimation should be carried out in the control process.

The rest of the article is as follows. In section 1, recursive equations are obtained for
finding Bayesian strategies, risks and regrets in the ordinary and invariant forms. Presented
here ordinary forms of equations are more convenient for computations than obtained in
[13]. The advantage of the invariant descriptions is that they depend only on the number of
processed batches and, hence, make it possible to obtain asymptotic estimates of Bayesian
risk and regret. Section 2 presents numerical results. Section 3 contains the conclusion.

1. Recursive Equations for Computing Bayesian Risks and Regrets

Consider the batch processing. Let the total number of data be N = MK, where
M is the batch size, K is the number of batches. The same action is applied to
each M sequentially incoming data, so that the income for processing the kth batch
is xk =

∑kM
n=(k−1)M+1 ξn. The mathematical expectation and the variance of income

when processing the batch with the second action are Mm and MD, the mathematical
expectation of income when processing the batch with the first action is still 0.

Recall noted in Introduction property of the Bayesian strategy: the use of the second
action can only start at the beginning of control. Let xi, i = 1, . . . , k, be incomes obtained
in response to the application of the second action at the beginning of control. The following
sufficient statistics can be used in considered case X =

∑k
i=1 xi, S =

∑k
i=1 x

2
i − X2/k,

where X and S are current values of cumulative income and s2-statistics for the application
of the second action. Note that X = 0 if k = 0 and S = 0 if k = 0, 1.
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Let’s consider how to update X and S. Assume that k ≥ 1, and let xk+1 = Y be a new

income. Then Xnew =
∑k+1

i=1 xi = X+Y , Snew =
(

∑k+1
i=1 x

2
i

)

−X2
new/(k+1) =

(

∑k
i=1 x

2
i

)

+

Y 2−(X+Y )2/(k+1) = S+M∆(X, k, Y ), where M∆(X, k, Y ) = (X−kY )2{k(k+1)}−1.
If k = 0 then M∆(0, 0, Y ) = 0. Hence, X, S are updated according to the rule

X ← X + Y, S ← S +M∆(X, k, Y ),
with ∆(0, 0, Y ) = 0, ∆(X, k, Y ) = (X − kY )2{Mk(k + 1)}−1, k ≥ 1.

(4)

Given a prior distribution density λ(m.D), let’s describe a posterior distribution
density. Consider a chi-squared distribution density with k degrees of freedom χ2

k(x) =

{2k/2Γ (k/2)}−1x
k

2
−1e−

x

2 , x ≥ 0, k ≥ 1. We introduce the function F(X,S, k|m,D) =
fkMD(X|kMm)ψk−1 (S/(MD)), where ψk−1 (S/(MD)) = (MD)−1χ2

k−1(S/(MD)). Note
that defined above cumulative income X and s2-statistics S after processing k batches
have exactly the distribution densities fkMD(X|kMm) and ψk−1 (S/(MD)) for k ≥
1 and k ≥ 2 respectively. Since X and S are independent random variables, the
posterior distribution density is λ(m,D|X,S, k) = F(X,S, k|m,D)λ(m.D)/P (X,S, k)
with P (X,S, k) =

∫∫

Θ
F(X,S, k|m,D)λ(m.D)dmdD for all k ≥ 2. These approach is

used in [13]. However, recursive equation becomes simpler if the posterior distribution is
defined in the following equivalent way. Denote F̃(0, 0, 0|m,D) = 1, F̃(X, 0, 1|m,D) =
D−1/2f̃kMD(X|kMm) and

F̃(X,S, k|m,D) = D−3/2f̃kMD(X|kMm)ψ̃k−1 (S/(MD)) , if k ≥ 2, (5)

where f̃D (x|m) = exp (−(x−m)2/(2D)), ψ̃k−1 (s) = s
k−1

2
−1 exp (−s/2). Clearly, the

posterior distribution density is

λ(m,D|X,S, k) =
F̃(X,S, k|m,D)λ(m,D)

P̃ (X,S, k)
,

with P̃ (X,S, k) =

∫∫

Θ

F̃(X,S, k|m,D)λ(m,D)dmdD

(6)

and this formula is valid for all k = 0, 1, 2 . . . .
Let RB(X,S, k) denote a Bayesian risk on the remaining control horizon k+ 1, . . . , K

computed with respect to the posterior distribution λ(m,D|X,S, k), i.e., RB(X,S, k) =
RB

M(K−k)(λ(m,D|X,S, k)). Since the use of the second action can start only at the
beginning of control and switching to the first action is performed until the end of the
control, a standard recursive equation for computing a Bayesian risk is as follows

RB(X,S, k) = min
(

RB
1 (X,S, k), R

B
2 (X,S, k)

)

, (7)

where RB
1 (X,S, k) = RB

2 (X,S, k) = 0 if k = K and

RB
1 (X,S, k) = (K − k)

∫∫

Θ

Mm+λ(m,D|X,S, k)dmdD,

RB
2 (X,S, k) =

∫∫

Θ

λ(m,D|X,S, k)×

×

(

Mm− +

∫ ∞

−∞

RB(X + Y, S +M∆(X, k, Y ), k + 1)fMD(Y |Mm)dY

)

dmdD,

(8)
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if 0 ≤ k ≤ K − 1. In the second equation (8), we used (4). Bayesian strategy prescribes,
when processing the batch with the number k+1, to choose an action corresponding to the
smaller of the current values RB

1 (X,S, k), R
B
2 (X,S, k). In the case of a draw, the choice

can be arbitrary. If the first action is chosen once it will be applied until the end of the
control. Bayesian risk (3) is

RB
N(λ) = RB(0, 0, 0). (9)

Let’s present another form of recursive equation. We put Rℓ(X,S, k) = RB
ℓ (X,S, k)×

P̃ (X,S, k), ℓ = 1, 2, where P̃ (X,S, k) is defined in (6).

Theorem 1. Consider the recursive equation

R(X,S, k) = min (R1(X,S, k), R2(X,S, k)) , (10)

where R1(X,S, k) = R2(X,S, k) = 0 if k = K and

R1(X,S, k) = (K − k)MG1(X,S, k),
R2(X,S, k) =MG2(X,S, k)+

+

∫ ∞

−∞

R(X + Y, S +M∆(X, k, Y ), k + 1)H(X,S, k, Y )dY,
(11)

if 0 ≤ k ≤ K − 1. Here ∆(X, k, Y ) is given by (4),

G1(X,S, k) =

∫∫

Θ

m+
F̃(X,S, k|m,D)λ(m,D)dmdD,

G2(X,S, k) =

∫∫

Θ

m−
F̃(X,S, k|m,D)λ(m,D)dmdD,

(12)

and H(0, 0, 0, Y ) = (2πM)−1/2, H(X, 0, 1, Y ) = (2πM)−1/2∆1/2(X, 1, Y ),

H(X,S, k, Y ) =
1

(2π)1/2
×

S(k−1)/2−1

(S +M∆(X, k, Y ))k/2−1
, if k ≥ 2. (13)

When processing the batch number k + 1, Bayesian strategy prescribes to choose the
action corresponding to the smaller value of R1(X,S, k), R2(X,S, k); in the case of a draw
the choice can be arbitrary. Once the first action is chosen, it will be applied until the end
of the control. Bayesian risk (3) is

RN(λ) = R(0, 0, 0). (14)

Proof. Let’s multiply (7), (8) by P̃ (X,S, k) defined in (6). We obtain (10), (11) with
G1(X,S, n2), G2(X,S, k) defined in (12). Let ∆ in formulas below be given by (4). Denote
D′ =MD, m′ =Mm. The function H(X,S, k, Y ) is

∫∫

Θ

F̃(X,S, k|m,D)fD′(Y |m′)λ(m,D)dmdD

P̃ (X + Y, S +M∆, k + 1)
=

F̃(X,S, k|m,D)fD′(Y |m′)

F̃(X + Y, S +M∆, k + 1|m,D)

with F̃(·) given by (5). Consider the case k ≥ 2, We have

H(X,S, k, Y ) =
f̃kD′(X|km′)fD′(Y |m′)

f̃(k+1)D′(X + Y |(k + 1)m′)
×

ψ̃k−1(S/D
′)

ψ̃k((S +M∆)/D′)
. (15)
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Since
f̃kD′(X|km′)fD′(Y |m′)

f̃(k+1)D′(X + Y |(k + 1)m′)
=

(

1

2πD′

)1/2

× exp

(

−
M∆

2D′

)

, (16)

ψ̃k−1(S/D
′)

ψ̃k((S +M∆)/D′)
=

(S/D′)(k−1)/2−1

((S +M∆)/D′)k/2−1
×

exp (−S/(2D′))

exp (−(S +M∆)/(2D′))

= (D′)1/2 ×
S(k−1)/2−1

(S +M∆)k/2−1
× exp

(

M∆

2D′

)

,

(17)

it follows from (15) – (17) that H(X,S, k, Y ) is given by (13) for k ≥ 2. The cases k = 1
and k = 0 are similarly considered. Since, P̃ (0, 0, 0) = 1 then (14) follows from (9).

✷

Let’s give an invariant form of equation for computing Bayesian strategy and risk. We
choose the following set of parameters ΘN = {(m,D) : |m| ≤ c(D/N)1/2, D ≤ D ≤ D},
where c > 0, 0 < D ≤ D < ∞. If we put D = βD, m = α(D/N)1/2 = α(β−1D/N)1/2,
then it takes the form ΘN = {(α, β) : D/D = β0 ≤ β ≤ 1, |α| ≤ cβ1/2}.

Consider the change of variables X = x(DN)1/2, Y = y(DN)1/2, S = sDM , k = tK,
M/N = K−1 = ε, m = α(D/N)1/2, D = βD, λ(m,D) = (N/D 3)1/2̺(α, β). Let’s put
Rℓ(0, 0, 0) = (DN)1/2rℓ(0, 0, 0), Rℓ(X, 0, 1) = (DN)1/2(D)−1/2rℓ(x, 0, ε) and Rℓ(X,S, k) =
(DN)1/2(D)−3/2rℓ(x, s, t) if k ≥ 2, ℓ = 1, 2. The following theorem is valid.

Theorem 2. To find the Bayesian risk, the recursive equation should be solved

r(x, s, t) = min (r1(x, s, t), r2(x, s, t)) , (18)

where r1(x, s, t) = r2(x, s, t) = 0 if t = 1 and

r1(x, s, t) = (1− t)g1(x, s, t),

r2(x, s, t) = εg2(x, s, t) +

∫ ∞

−∞

r(x+ y, s+ δ(x, t, y), t+ ε)h(x, s, t, y)dy,
(19)

if 0 ≤ t ≤ 1 − ε. Here g1(x, s, t) =

∫∫

ΘN

α+
f̃(x, s, t|α, β)̺(α, β)dαdβ, g2(x, s, t) =

∫∫

ΘN

α−
f̃(x, s, t|α, β)̺(α, β)dαdβ with f̃(0, 0, 0|α, β) = 1, f̃(x, 0, ε|α, β) = β−1/2f̃tβ(x|tα)

and f̃(x, s, t|α, β) = β−3/2f̃tβ(x|tα)ψ̃k2−1(s/β) if t ≥ 2ε. The function h(x, s, t, y) is as
follows: h(0, 0, 0, y) = (2πε)−1/2, h(x, 0, ε, y) = (2πε)−1/2δ1/2(x, ε, y) and h(x, s, t, y) =
(2πε)−1/2s(k−1)/2−1/(s + δ(x, t, y))k/2−1 if t ≥ 2ε with δ(x, t, y) = (εx − ty)2{εt(t + ε)}−1.
Bayesian risk (3) is

RN (λ) = (DN)1/2r(0, 0, 0). (20)

Bayesian strategy prescribes to choose the action corresponding to the currently smaller
value of r1(x, s, t), r2(x, s, t); in the case of a draw, the choice can be arbitrary. Once the
first action is chosen, it will be applied until the end of the control.

Proof. The theorem is proved by performing the presented above change of variables in
(10) – (14).

✷

32 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2024, vol. 17, no. 1, pp. 27–36



МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Let’s present a recursive equation for computing the regret (2). We restrict
consideration to strategies σ which can start the use of the second action only at the
beginning of the control and are described by a set of probabilities σℓ(X,S, k) = Pr(yk+1 =
ℓ|X,S, k), ℓ = 1, 2; k = 0, . . . , K−1. Similarly to theorem 1, the following theorem is valid.

Theorem 3. Consider a recursive equation

L(X,S, k) =

2
∑

ℓ=1

σℓ(X,S, k)Lℓ(X,S, k), (21)

where L1(X,S, k) = L2(X,S, k) = 0 if k = K and

L1(X,S, k) = (K − k)MG1(X,S, k),
L2(X,S, k) =MG2(X,S, k)+

+

∫ ∞

−∞

L(X + Y, S +M∆(X, k, Y ), k + 1)H(X,S, k, Y )dY,
(22)

if 0 ≤ k ≤ K − 1. Here G1(X,S, k), G2(X,S, k) are given by (12), H(X,S, k, Y ) is given
by (13). A regret (2) is

LN(σ, λ) = L(0, 0, 0). (23)

To obtain the regret (1) one should choose a degenerate prior distribution density
concentrated at the parameter θ.

To present invariant form of the equation for computing the regret, let’s make
additional change σℓ(X,S, k) = σℓ(x, s, t), Lℓ(0, 0, 0) = (DN)1/2lℓ(0, 0, 0), Lℓ(X, 0, 1) =
(DN)1/2(D)−1/2lℓ(x, 0, ε) and Lℓ(X,S, k) = (DN)1/2(D)−3/2lℓ(x, s, t) if k ≥ 2, ℓ = 1, 2.

Theorem 4. To find the regret, one should solve the recursive equation

l(x, s, t) =
2
∑

ℓ=1

σℓ(x, s, t)lℓ(x, s, t), (24)

where l1(x, s, t) = l2(x, s, t) = 0 if t = 1 and

l1(x, s, t) = (1− t)g1(x, s, t),

l2(x, s, t) = εg2(x, s, t) +

∫ ∞

−∞

l(x+ y, s+ δ(x, t, y), t+ ε)h(x, s, t, y)dy,
(25)

if 0 ≤ t ≤ 1 − ε. Here g1(x, s, t), g2(x, s, t), h(x, s, t, y) and δ(x, t, y) are described in
theorem 2. A regret (2) is

LN (σ, θ) = (DN)1/2l(0, 0, 0). (26)

2. Numerical Results

We computed Bayesian risk for K = 18 and M = 1 using formulas (10) –
(14). When performing numerical integration, X varied in the range from -7 to 7 in
increments of 0,07, and S varied from 0,005 to 20,005 in increments of 0,01. A small
increment in S is due to the singularity of H(X,S, k, Y ), and accordingly R(X,S, k),
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at the point S = 0 if k = 2. The set of parameters was Θ = {θ11, θ12, θ21, θ22} with
θ11 = (mp, D), θ12 = (mn, D), θ21 = (mp, D), θ22 = (mn, D), where D = 1, D = 0, 7,
mp = 1, 5(D/N)1/2, mn = −2, 5(D/N)1/2. For prior distributions λ = (λ11, λ12, λ21, λ22),
where λij = Pr(θ = θij), values of normalized Bayesian risks rBN(λ) = (DN)−1/2RB

N (λ)
are presented in the Table. Then we approximated risks from the Table by risks and

Table

Normalized Bayesian risks and their estimates

λ λ11 λ12 λ21 λ22 rBN(λ) rBN(λ
′) lBN(σ(λ

′), λ′′) rBN(λ
′′) lBN(σ(λ

′′), λ′) lN(λ)
1 0, 2 0, 3 0, 2 0, 3 0, 36 0, 39 0, 33 0, 33 0, 39 0, 36
2 0, 2 0, 3 0, 3 0, 2 0, 34 0, 39 0, 31 0, 33 0, 39 0, 35
3 0, 1 0, 4 0, 4 0, 1 0, 33 0, 30 1, 20 0, 18 0, 60 0, 57

regrets, computed on the sets of parameters {θ11, θ12} and {θ21, θ22}, each of which
is characterized by a single value of variance. To this end, on the sets {θ11, θ12} and
{θ21, θ22} prior distributions λ′ = (λ11/µ1, λ12/µ1) and λ′′ = (λ21/µ2, λ22/µ2) were assigned
with µ1 = λ11 + λ12, µ2 = λ21 + λ22. Then for a prior distribution λ′ a normalized
Bayesian risk rBN(λ

′) = (DN)−1/2RB
N (λ

′) and a Bayesian strategy σB(λ′) were determined.
Then the strategy σB(λ′) was applied on a prior distribution λ′′ and the normalized
regret lBN (σ(λ

′), λ′′) = (DN)−1/2LB
N (σ(λ

′), λ′′) was computed using (21)–(23). Similarly,
rBN (λ

′′) and lBN(σ(λ
′′), λ′) were computed. Finally, the estimate of Bayesian risk rBN(λ) is

lN (λ) = µ1

(

µ1r
B
N(λ

′) + µ2l
B
N(σ(λ

′), λ′′)
)

+ µ2

(

µ1l
B
N (σ(λ

′′), λ′) + µ2r
B
N(λ

′′)
)

.
The results are also presented in the Table. Everywhere µ1 = µ2 = 0, 5. One can see

that if the distributions λ′ and λ” are close (cases 1 and 2), then the estimate lN (λ) is
close to the value of the risk rBN(λ). If the distributions λ′ and λ” are very different, then
the estimate lN(λ) is very different from rBN(λ).

For approximate finding the minimax strategy and risk, the main theorem of game
theory is used, according to which the minimax strategy and risk coincide with the
Bayesian ones computed with respect to the worst-case prior distribution at which

Normalized regrets for different variances
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the Bayesian risk is maximal. As an example, consider the approximate finding the
minimax risk at K = 18, M = 1 on the set Θ = {(m,D) : 0, 7 = D ≤ D ≤
1 = D, m = α(D/N)1/2, |α| ≤ 5}. In this case, approximately the worst-case prior
distribution was found as Pr(D = 1, α = 1, 9) = 0, 3, Pr(D = 1, α = −2, 2) = 0, 15,
Pr(D = 1, α = −5) = 0, 55, the corresponding Bayesian risk is approximately 0,41. Then,
regrets were calculated for the strategy found. In Figure, lines 1, 2, 3, 4 correspond to
regrets, calculated in increments of 0,5, at variance values of D = 1, 0, 9, 0, 8, 0, 7. One
can see that the maximum values of the regret are approximately the same as the Bayesian
risk calculated with respect to the worst-case prior distribution.

Conclusion

We obtained recursive equations for computing Bayesian risk and regret in the usual
and invariant form which make it possible to compute them for any number of data
multiples of the number of batches. To find minimax strategy and risk, one should
determine them as Bayesian ones on the worst-case prior distribution.
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ИНВАРИАНТНОЕ ОПИСАНИЕ УПРАВЛЕНИЯ В ЗАДАЧЕ
О ГАУССОВСКОМ ОДНОРУКОМ БАНДИТЕ

А.В. Колногоров, Новгородский государственный университет
им. Ярослава Мудрого, г. Великий Новгород, Российская Федерация

Рассматривается задача об одноруком бандите в приложении к пакетной обра-

ботке данных, если имеются два альтернативных метода обработки с разной эффек-

тивностью, причем эффективность второго метода априори неизвестна. В процессе

обработки необходимо определить наиболее эффективный метод и обеспечить его пре-

имущественное использование. Обработка выполняется пакетами, поэтому распреде-

ление доходов является гауссовским. Мы рассматриваем случай априори неизвестных

математического ожидания и дисперсии одношагового дохода, соответствующих вто-

рому действию. Этот случай описывает ситуацию, когда сами пакеты и их количе-

ство имеют умеренные или небольшие объемы. Получены рекуррентные уравнения

для вычисления байесовского риска и функции потерь, которые затем представлены

в инвариантном виде с горизонтом управления, равным единице. Это позволяет по-

лучить оценки байесовского и минимаксного рисков, которые справедливы для всех

горизонтов управления, кратных количеству обработанных пакетов.

Ключевые слова: однорукий бандит; пакетная обработка; байесовский и мини-

максный подходы; инвариантное описание.
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