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The study of the phase space morphology of the mathematical model deformation of
an I-beam, which lies on smooth Banach manifolds with singularities (k-Whitney assembly)
depending on the parameters of the problem, is devoted to the paper. The mathematical
model is studied in the case when the operator at time derivative is degenerate. The study
of the question of non-uniqueness of the solution of the Showalter—Sidorov problem for the
Hoff model in the two-dimensional domain is carried out on the basis of the phase space
method, which was developed by G.A. Sviridyuk. The conditions of non-uniqueness of the
solution in the case when the dimension of the operator kernel at time derivative is equal
to 1 or 2 are found. Two approaches for revealing the number of solutions of the Showalter—
Sidorov problem in the case when the dimension of the operator kernel at time derivative
is equal to 2 are presented. Examples illustrating the non-uniqueness of the solution of the
problem on a rectangle are given.
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Introduction

Extensive class of models of mathematical physics is based on semilinear non-classical
equations or systems of partial derivative equations unsolved with respect to the time
derivative

Li = Mu+ N(u), (1)

which are commonly called Sobolev type equations. Equations of this class and initial
problems for them cannot be investigated by classical methods due to the possible
degeneracy of the operator at the higher derivative, so their investigation requires the
development of new and modifications of already known methods of investigation [1-5].
Let us consider a mathematical model based on the Sobolev type equation. Let €2 C R”
be a bounded domain with boundary of class C*°. Let us consider the Hoff model [6]

(4 Ay = au + Bu®, € Q,t € (0,T), (2)
with the Dirichlet condition
u(z,t) =0, (z,t) € 0Q x (0,T). (3)

The Hoff model describes the deformation dynamics of an I-beam. The unknown function
u = u(z,t), x € Q, t € (0,T), has the physical meaning of the deflection of the beam
from the equilibrium position. The parameter p € R characterises the longitudinal load on
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the beam and the parameters «, 5 € R characterise the material properties of the beam.
Studies for equation (2) on graphs are presented in [7,8|, on manifolds in [9].

One of the first to study the initial boundary value problem for equation (2) was
N.A. Sidorov [10]. In this work, the principal insolvability of the Cauchy problem (u(zx,0)—
up(z) = 0) at an arbitrary initial value in the case of degeneracy of equation (2) was noted.
Consideration of the Showalter—Sidorov condition [11]

L (u(z,0) = uo(x)) = 0 (4)

allows one to avoid difficulties in solving the Cauchy problem, but non-uniqueness of the
solution of problems (2) — (4) is possible [12].

The questions of non-uniqueness of solutions of equations and systems of equations
reduced to semilinear equations of the form (1) with the Showalter—Sidorov condition
(4) and the connection of non-uniqueness of the solution with the existence of Whitney
assemblies and folds in the phase space of equation (1) were devoted to the following works:
T.A. Bokareva and G.A. Sviridyuk for the model of nerve impulse propagation in the
membrane and for the model of autocatalytic reaction with diffusion showed the existence
of 2-Whitney assemblies and 1-Whitney folds, respectively [13], A.F. Gilmutdinova for the
Plotnikov mathematical model revealed the conditions for the existence of non-uniqueness
of the solution [14].

To take advantage of earlier results obtained in [12-14] for semilinear abstract Sobolev
type equations, let us reduce the problem (2), (3) to equation (1). For this purpose, we

assume 4 =W} (), F = W, 1(Q). The operators L, M are defined by the formulas

(Lu,v) = (pu + Au,v) Yu,v € U,
(Mu,v) = (o, v) Vu,v € 4,

where (-, -) is the scalar product in Ls(£2). We note that the operator L € £(4,F), M €
L£(4, F). The spectrum o (L) of the operator L is real, discrete, finite-edge, and condensed
to —oo. Now let us construct the operator N

(N(u),v) = <6u3,v> Yu,v € L.
By virtue of Gelder’s inequality

(N (u), 0)] < 1Bllull, o) V]l zae)

operator N : Ly(Q) — (L4(Q2))* = Ly/3(Q2). When n < 4 the embedding Wy () < L4()
is dense and continuous, and hence the embedding Ly/3(€2) < W5 (£2). Thus, the action of
the operator N : 4 — §. By virtue of the given operators, the Showalter—Sidorov problem
(4) for equation (2) will take the form

(u+A) (u(z,0) —ug(x)) =0, x € Q. (5)

G.A. Sviridyuk and his successors developed a method [1,15], based on the study of
the morphology of the set of admissible initial values B

B ={uel: (I-Q) (Mu+ N(u))) =0}, (6)
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understood as the phase space of equation (1). In [16] the projector

Q:H_ <'7()0l>301

m
k=1

was constructed and it is shown that the phase space (6) for model (2), (3) take the form

B = ueil:/(oz+6u2)ucpldx20 : (7)
Q

where ¢; are the eigenfunctions of the homogeneous Dirichlet problem of the operator L.

In the case when the phase space of the model (2), (3) has singularities, the non-
uniqueness of the solution of the Showalter—Sidorov problem arises, and the simplicity
of the phase space of the model (2), (3) implies the singularity of the solution. In [16]
it was shown that the phase space of equation (2) is a simple Banach C'*°-manifold in
case aff > 0, in case af3 < 0 the phase space of equation (2) may contain a 2-Whitney
assembly [17]. In [18], conditions on the parameters «, 3, were found under which the
phase space of equation (2) has singularities in case dimker(u + A) = 1.

As the paper, in addition to theoretical studies, also contains the results of numerical
experiments, it is necessary to mention the Galerkin method, which is the basis for the
computational experiments. Obtaining an analytical solution of Sobolev type equations
(1) is not always possible, so the construction of algorithms for numerical methods is in
demand. For degenerate semilinear equations, the Galerkin method is the most appropriate
one, since it allows to incorporate the degeneracy of the equation for some parameters.
Using the Galerkin method, approximate solutions of the problem are constructed, whose
coefficients satisfy the system of algebro-differential equations with appropriate initial
conditions [19-21].

The purpose of this study is to investigate the model (2), (3) and to identify the
conditions imposed on the parameters «, 3, under which the phase space has singularities
and there are several solutions to the Showalter—Sidorov problem (2), (3), (5) at
dimker(u 4+ A) =1 and dimker(p + A) = 2.

1. Features of Phase Space

Let us study the morphology of the phase space of the model (2), (3) in the case
) C R2 Let us find the conditions imposed on the parameters of the equation «, 3, in
which the phase space has singularities and it follows that the solution to the Showalter—
Sidorov problem is non-unique (2), (3), (5).

Let us consider the homogeneous Dirichlet problem for the Laplace operator (—A).
Let us denote by {\y, &,} the family of eigenvalues of the problem under consideration.
In case

a) if 1 = Mg, k, and ky = ko, then dimker(p + A) = 1 and the considered eigenvalue
Ak, ke corresponds to one eigenfunction ¢y, ,(7,y), then u can be represented as u =
S19ky. ke +ut, ut € Ut = {u € Ly(Q) : (u, pr, 1) = 0};

b) if 4 = A, &, and ky # ko, then dimker(y + A) = 2 and the considered eigenvalue
Ak, ky corresponds to two eigenfunction ¢y, k,(z,y) and @, ,(z,y), then u can be
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represented as U = S1Pk,. ky + S2Pky. 1y + U, ut € Ut = {u € Ly(Q) : (u, 0y, 1) =
0, <u: Pko, k1> = 0}'

Example 1. As an example, consider {2 = (0,1;) x (0,l3), then the Dirichlet condition
(3) takes the following form:

u(07 y? t) - /U/(ll, y7 t) = 07 u(x7 07 t) = /U/(I7 l27 t) - O‘

At the same time

2 2
Ok ;@(ﬂv,y):@/isinﬁklxsin@,)\k1 ky = mh + L ,k=1,2,...
7 lily I ly ’ [y ly

In case [y =y, =,
a) if = A1 = 2 (k1 = k2 = 1), then the considered eigenvalue A;; corresponds to

one eigenfunction ¢y (x,y) = —sinxsiny and dimker(p + A) = 1;
i
b) if p = A2 =5 (k1 # k2), then the considered eigenvalue A; 5 corresponds to two

2
eigenfunctions ¢y o(x,y) = —sinxsin 2y, @9 1(z,y) = —sin2zsiny and dimker(p+A) =
7r 7r
2.

In case a) u = sy, k, + u*, then set B C*-diffeomorphic to the set
B, = {(Slaul) € R x Ly(Q) : s, kz”i(m + 357 éf @%1, k:zuL dxdy +
(8)
+ 51 (3 [ @i, g, (uh)? dedy + a,61> + [[ orr, ko (uh)? dady = O} .
Q Q
In case b) u = 519k, ky + S2Pko, by + ut, then set B C*®-diffeomorphic to the set
B, = {(s1,52,u) € R? x Ly() :

B[] @ro. 1 (ub)? dady + B [[ ory, ko (uh)? daedy + asy + ass+
+%581 [, g (ut)? dl’d;‘i‘ 3652 [[ @kr, kP, 1y (uh)? dady—+
+ 3351 ff Okr. ke Pha, by (uh)? dxdy —|—Q3652 I cpi% . (ut)? dady+
+ 3352 ff O e dedy +36s3 [[ o, kfpﬁg, U dedy+
+303s3 ﬁf O, Ut dedy + 3057 Sf]f s kyPha, kU ddy—+ (9)
+ 365%(322 If 9021’ oy Pl ey dxdy —l—%ﬁsls% I ‘le, kg(pi% gy dady +
+ 3[s%sy Zf Ok by Phg, ky ddy + 305155 Zf Dkr, kyPhy, 3y drdy +
Bstllen, kallz, + Bss {lf P, ks Phy. 1y ddy+
+ B850k, k1 11400 + 557 {zf Dy by Pha, by drdy = 0} :
The sets B, and B, describe the phase space of the model (2), (3) in the case of k; = ko and

ky # ko, respectively. Let us give a definition of the phase space containing the k-Whitney
assembly.

52 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2024, vol. 17, no. 1, pp. 49-63



MATEMATNYECKOE MOJAEJIMPOBAHINE

Definition 1. [14] Let ¥ be a Banach space, function G € C* (R x U;R). The equation
G(s,v) = 0 defines a k- Whitney assemblys over the open set 8 C 5 if there exist functions
90,91, -, Gk € C’O"(%/; R) such that this equation is equivalent to the equation

0=go(v) +g1(v)s + ... + ge(v)s* + s Yo e Y.

Let us formulate a theorem about the structure of the phase space of the model (2), (3).

Theorem 1.

(i) Let af > 0, then the phase space of the model (2), (3) is a simple Banach C*-
manifold modeled by a subspace complementary to ker(u + A).

(i1) Let a8 <0 and ki = ko, then the set B, forms a Whitney 2-assembly.

(i1i) Let af <0 and ki # ks, then the set B, forms a k-Whitney assembly.

Proof. The proof of item 1 is given in the work [16], the proof of item 2 is given in the
work [17]. The validity of item 3 follows from the construction of the set B, (9) and
Definition 1. The set B, contains the k-Whitney assembly, £ = 2...8. The degree of
assembly depends on the model parameters and the type of domain 2.

([
The equation defining the set 8, is a cubic equation of general form
as} + bs; +csy +d = 0. (10)
Let’s define
3ac—0*\° 1 /20 be d\®
Qilu) = (TLQ ) 1 (27a3 ‘@W) ’ "
Rl(U) = S%H()Dkl7 k2Hi4(Q) + 281 @217 k2ul dxdy + // 80217 kQ(UL>2 dl'dy,
Q Q
where
a = [ @rs, kallf, ) b= 3£f w3t dedy,
12
=3[ ¢ (b dady +afd = [f g, g(ut)dady, (12)
Q Q

and consider the following sets

(U))g = {u € Y4+ : Ry(u) = 0},
() ={uedt:Qi(u) >0}, ()t = {uet:Q(u) <0}.

Theorem 2. Let aff < 0. Then

(i) for any u € ()= N (Lh)5 there is one solution to the equation (10);

(i) for any u € (4,)= N (L) N (Lh)g there are two solutions equations (10);
(iii) for any u € (4,)* N (L)L there are three solutions to the equation (10).

Proof. The theorem is valid due to the Cardano formulas (11), (12) for the equation (10).
([
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Theorem 3. Let aff <0 and pt = A\, &y, k1 = koo Then

(i) for any ug € (4,) N (44,)L there are three solutions to the problem (2), (3), (5);

(ii) for any ug € (4,)= N (L) N (84,)y there are one or two solutions to the problem (2),
(3), (5);

(ii1) for any ug € (8,)F N (8h,)5 there is only one solution to the problem (2), (3), (5).

Proof. (i) Let’s take point ug € (4,)F N (4,)L. According to Theorem 2, there are three
solutions s}, s2, s? to the equation (10), which means that the point ug serves as the image
of three points up = sipg, r,+u’ € By, ud = stop, r,tut € By, ud = s3pp, r,+ut € B,.
According to the Theorem on the existence of a solution to the Showalter—Sidorov problem
[22] the problem (2), (3), (5) should have three different solutions.

(ii) Let’s take point ug € (U,)= N (4,)+ N (L) According to Theorem 2, there are
two s, s2 or one s; solutions to the equation (10), which means that the point ug serves as
the image of three points Uy = S10k,, &y + ut € B, or for two points uf = stor, r, +ut €
B, ud = s¥pp, K, +ut € B,

(ii1) Let’s take point ug € t- N4l According to Theorem 2, there is only one solution
s1 to the equation (10), which means that the point ug serves as the image of only one
point ug = $19k,, &, + ut € B,. According to the Theorem on the existence of a solution
to the Showalter—Sidorov problem the problem (2), (3), (5) should have only one solution.

O
Remark 1. In the case of 2 C R, similar conditions were obtained in the work [18].

Let’s move on to studying case b), in which g = Mg, k, (k1 # ko) n dimker(p+A) = 2.
To do this, we construct the set (9) in an equivalent form:

B, = {(s1,50,ut) € R2 x Ly(Q) :

sy + ﬁs?”@’ﬂ, k2H4L4(Q)+

+ B ff Pk, kQ(ng k1 dxdy—i—ﬁff Oy, ko ( (ut)? dzdy +

* 368182 ff Pl 1Pz dxdy—i—Sﬁsls% ff Phr, ke Phy, ko ATy +
365% ff 9%1 kzgu dxdy + 3081 ff 8%1 k2 ) dxdy +

+ 3652 ff Pk, k:290k2 klu dl‘dy + 3/332 ff Pk1, k2 Pka, k:1( )2 dl‘dy = 07 (13)

Sy + ﬁS%HS@kz, k‘1H%4(Q)+
+ B3 [ 0%, 1Pha, by dzdy + B [[ ks, 1, (uh)? dady +
Q Q
+ 3Bsisy [ ‘Pil, kg(ng, py dxdy + 385183 [[ @y, kggozm g, drdy +
)

Q
+ 365% ff @il, ko Pka, k‘lul dl‘dy + 3/331 ff Pki, kaPka, ki (UL)Q dl‘dy +
Q Q

+ 36s3 [[ gaz% kluL dxdy + 3Bss [[ gpi% ,ﬂ(uL)2 dxdy = O} )
O O

Approach 1. In the general case, identifying the number of solutions to the problem
(2), (3), (5) causes difficulties. It is impossible to apply one general method. Let us
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consider one of the cases in which it is possible to identify the number of solutions to
the problem being studied. Suppose there are pairs a1, 51 € R and as, 5 € R such that
upon substitution vy, = a1 + f152, V2 = sy + (252, in the equations of the system (13),
defining the set ‘B,, we can obtain a system of equations of the following form:

a1v? + byv? + vy +dy = 0, (14)
a3 + bov3 + covy + dy = 0.
Let us define for the first equation of the system (14) the Cardano formulas
Baer — 2\ 1/ 208 by di)’
Liw) = Lt - (It T
@) = ( 92 ) T (27a§> 322 T al) ’ 15)
Ryw) = Fln. by + 200 [ [ b, it dody+ [ [ G, i(ac)? dad,
Q o)
for the second equation of the system (14) of the Cardano formulas
2 3&262 — b% 3 1 ng bQCQ dg 2
GU={"0q ) "1\zag 3@ W)
(16)

R3(u) = U%H‘sz, leZ(Q) + 20, @227 klul dxdy + // gpzm . (ul)Q dxdy,
0 Q

and introduce the following sets

= {{u € il; %%(u) > 0,Q3(u) > 0},
= U € a7 =

U,
U,
U,
U

2

= {u € Ut : RZ

(
| -
( ={ue Ut : Qi(u) <0,Q3(u) < 0}.

S— N N
S+

Theorem 4. Let aff <0 and pt = \g,, gy, k1 # k2 and 3oy, b1, az, B2, such that (14). Then
(i) for any ug € (U,)* N (L,)L there are nine solutions to the problem (2), (3), (5);

(ii) for any uy € (84,)2N(L0,)g U (8,5, exists from two up to eight solutions to the problem
(2), (3), (5);

(ii1) for any ug € (L)1 N (Lh,)5 there is a unique solution to the problem (2), (3), (5).

Proof. (i) Let’s take a point uy € (4,)F N (4U,)L. According to Theorem 2, there are three
solutions v}, v?, v} of the first equation from the system (14) and three solutions v3, v, v3
of the second equation from system (14), which means that point ug serves as the image
of three points uf = viQr,. &y + V30ky, by + Ut € By, ug = ViR, by + V3Pky. 1y +ut € By,
Ud = V3R, gy + V3P, 1y + ut. But when reversely replaced by s; and sy, the point ug
should serve as the image of nine points. According to the Theorem on the existence of a
solution to the Showalter—Sidorov problem [22], the problem (2), (3), (5) should have nine
different solutions.

(ii) Let’s take the point uy € (4,)* N (£6,)5 U (4h,)a;. According to Theorem 2, there
are from two to eight (s, s5) solutions to the system of equations (14), which means that
the point ug serves as the image of two to eight points belonging to B, .
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(ii1) Let’s take the point ug € U+ N4, According to Theorem 2, there is one solution
vy and v to the equation from the system (14), which means that the point ug serves as the
image of only one point uy = V1Qk, ky + V2Pky, &y + ut € B, or after reverse substitution
Uy = S1Pk, ke T 52Pks, by T+ ut € B,. According to the Theorem on the existence of a
solution to the Showalter—Sidorov problem, the problem (2), (3), (5) should have only one
solution.

O

Approach 2. The approach described above cannot always be applied in a general form,
so let’s consider another approach that allows us to investigate the problem (2), (3), (5) for
the existence of non-unique solutions. To do this, let’s solve the first equation of the system
(13), which defines the set B,, with respect to one of the variables, for example s;. Thus,
solving the cubic equation, we obtain up to three solutions six(sq). Substituting six(s2)
into the second equation of the system (13) we obtain up to three third degree equations
depending on s,. Thus, depending on the values of the parameters of the equation (2),
there can be from one to nine solutions to the problem (2), (3), (5).

2. Numerical Experiment

Let us consider more specific examples of numerical investigation of the non-
uniqueness of solutions to the Showalter—Sidorov problem (2), (3), (5) using approach
1 and 2 described in paragraph 1.

Example 2. Let Q = (0,7) x (0,7), consider the Showalter—Sidorov—Dirichlet problem:

5 (u(x, Y, O) - UO(.CE, y)) + (um:(xa Y, O) + uyy(xa Y, 0) - ’LLO(JZ', y)) = 07 (17>
€ (0,m),y € (0,m),
u(0,y,t) = u(m,y,t) =0, y € (0,7), t € (0,1), (18)
u(z,0,t) = u(x,m,t) =0, x € (0,7), t € (0,1),
for the Hoff equation
5ut + Uzt + uyyt =au—+ 6”37 (19>

where ug(z,y) = %sinxsiny — %sin 2z sin 2y. It is required to identify the existence and
number of solutions to the problem (17) — (19).

Under the conditions of this example, i coincides with the second eigenvalue A\; o =5
of the homogeneous Dirichlet problem for the operator (—A) and the considered eigenvalue

A2 corresponds to two eigenfunctions ¢y2(z,y) = —sinzsin2y and ¢o(z,y) =
T

— sin 2z siny. Following the algorithm, we represent the function u(z,y,0) in the form
™

u(z,y,0) = s1p19 + S2p21 + ut, ut € Ut the set B, take the form:

CKS + 9681 +6682 +9581 + 358182 — 0’
B, = {(51, so,ut) ERZx Ly(Q) : ) (20)
sy + 6le +9/552 _}_%157;922 + 355152 —0
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Substituting v; = 51 — 282, v9 = $1 — Sy into (20), we obtain a system of cubic equations:

B 78v + 12m2av; + 365,
3672

— 0,

(21)

218v3 + 1672wy + 488y
3672

=0,

equivalently defining the set 98B,. Let us define for the first equation in (21)

Loy (252m%af + 75667 °
O

and for the second equation in (21)

[ 10087%af3 + 302457\ °
Q3 = (TR )

Let’s consider the special case when a = 1, and 3 = —3, 5, then Q} = 0,00109023 > 0,
Q32 = 0,00009571 > 0, from which it follows that the solution to the Showalter—Sidorov—
Dirichlet problem (17) — (19) is unique. To construct a numerical solution to the problem
(17) — (19), we use an algorithm for finding an approximate solution to the Showalter—
Sidorov problem based on the modified Galerkin method. Following Galerkin’s method,
we look for an approximate solution to the problem under consideration in the form of the

suim
m

um(xu Y, t) - Z Z Uky, ks (t)(pk'lka (ZL‘, y)'

k1=1ko=1

Let us briefly present the numerical solution algorithm; a detailed description of the
algorithm is presented in the work [18]:

Step 1. Construct approximate sums and substitute them into the equation.

Step 2. Multiply the resulting equation scalarly in Lo(£2) by the eigenfunctions
Ok ks (2, y) and obtain a system of equations for the unknowns wuy, , (%)

Step 3. Depending on the parameter p, we obtain differential or algebraic equations
in this system. In this example, a system of algebraic-differential equations is obtained
due to the degeneracy of the equation. We find m or (m — 1) or (m — 2) initial conditions
depending on the number of algebraic equations of the system.

Step 4. We numerically solve the system of algebraic-differential equations with m or
(m —1) or (m — 2) initial conditions and find the unknown functional coefficients wuy, ,(t)
in the approximate solution u,,(x,y,t).

Step 5. We build a graph of the approximate solution.

The numerical solution of the problem (17) — (19) in the case of a = 1, f = —3,5 is
presented in Fig. 1.

In the case when a = 1, 3 = —0,1, then Q) = —16,3518 < 0, Q3 = —14,355 < 0,
which implies the existence nine solutions to the Showalter—Sidorov—Dirichlet problem (17)
— (19). The resulting numerical solution to the problem based on the presented algorithm
is shown in Fig. 2.
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Fig. 2. Numerical solution u(z,y,t) of the problem (17) — (19) in the case of non-unique
solution
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Example 3. Let’s consider finding solutions to the problem (17) — (19) based on the
second approach. To do this, we transform the equations of the system (13), adding them,
and get

( 3 2
98s 65s 98s 38s1s
as) + sy + ﬁ21+ 62+ D5t 355,

377 4 2 2
+6ﬁ81 n 9532 9ﬁ32 n 3Bs1sa 0
2 2 47?2 72 (22)

66s; 9B8ss  98s3  3Bs’s
&32+51+622+522+6212
\ T T 47 T

=0.

Let us decompose the first equation of the system (22) into two factors:

(23)

(51 + 52) ((93% + 35182 + 952 + 60) 3 + 47T2a) o
472

Let us solve the equation (23) with respect to the variable s;. Thus, we get up to three

solutions s1x(s2), k = 1,..., 3. Substituting s;x(se) into the second equation of the system

(22) we obtain up to three third degree equations depending on s,. With the reverse

substitution of sy into syx(se) and depending on the values of the parameters of the

equation (19), there can be from one to nine solutions to the problem (17) — (19).

Let’s consider the special case when o« = 1, § = —0,5, in this case there are five
solutions to the Showalter—Sidorov—Dirichlet problem (17) — (19). In Fig. 3 shows the
resulting numerical solution to the problem based on the algorithm presented in example 2

l’t

in
Fi i,
e 8

Fig. 3. Numerical solution of u(x,y,t) problem (17) — (19)
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NCCJIEAOBAHVE EJVMHCTBEHHOCTU PEIIITEHN A
SAJAYN LNIOYOJITEPA — C1J10OPOBA

JJId MATEMATUYECKOM MOJEJIN XOD®A.
MOP®OJIOINA ®PA30OBOI'O ITPOCTPAHCTBA

H.I'. Huxonaesa', O.B. I'aepunaosa', H.A. Manaxosa'
TOxm0-Ypasbekuit rocy1apeTBenHblii yHIBEpCUTeT, T. e Ia0uHCK,
Poccuiickas Peieparius

CraTbs MOCBsIIeHa U3y YeHHI0 MOP@OJIOrun Ga30BOro MPOCTPAHCTBA MATEMATUIECKOHN
MoJen JiepopMalIiiy JBYTABPOBOH GAJIKM, KOTOPOE JIEXKUT Ha IJIAJKUX OAHAXOBBIX MHO-
roobpasusax ¢ ocobenHocrsvu (k-cO0pka YUTHH) B 3aBUCUMOCTH OT IIAPAMETPOB 3aJa4u.
MaremaTudeckasi MOJIE/Ib U3y9YeHa B CJIydae, KOTJIa OIepaTop IPU IIPOU3BOIHON 110 BpeMe-
HU sIBJISIETCS BBIPOXKIEHHBIM. llcciieioBanme BOIpOCa HEeIMHCTBEHHOCTU PEIEeHUs] 33,1891
[MToyonrepa — Cumoposa mist mogesn Xodda B IByMEpHOi 06JIACTH TIPOBEJIEHO HA OCHOBE
MeTosa (ha3zoBoOro MpOCTPAHCTBA, KOTOPLIH ObL1 paspaboran [.A. Ceupumiokom. Haiimensr
YCJIOBUSI HEEIUHCTBEHHOCTH PEIIEHUsl B CJIydae, KOrJa Pa3sMepHOCTh sijipa oleparopa Ipu
[IPOU3BOIHON M0 BpeMenu pasHa 1 wim 2. IIpegcraBieHsl ABa MOAXOAA JJIsl BbISBJICHUS
KoJsimuecTBa pemennii 3agaun [lloyonrepa — CumopoBa B cilyuae, pa3MEPHOCTH s1APa, Ollepa-
TOpa IIPU IIPOU3BOLHOM 10 BpeMeHu paBHOro 2. IIpuBeeHbl MpUMepbl, UIIIOCTPUPYIOIIHe
HEEeIMHCTBEHHOCTb PEIleHNs UCCJIELyeMOi 3aJa4un Ha, IIPAMOYTOIbHUKE.

Karuesvie caosa: ypasnenus coboaesckozo muna; 3adaua Illoyoamepa — Cudoposa;
memod Pa3o6020 npocmpancmea; cbopra Yumnu; ypasuerue Xodpa; needurncmeerrocms

peweHul.
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