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In conjugate gradient techniques, the conjugate formula is often the primary point of

concentration. The conjugate gradient technique is used to solve problems that arise during

the process of picture restoration. By using the quadratic model, a brand-new coefficient

conjugate will be produced for the operation. The algorithms demonstrate both local and

global convergence and descent. The numerical testing revealed that the newly developed

method is much superior to the one that came before it. The recently created conjugate

gradient strategy has better performance than the FR conjugate gradient technique, which

is the industry standard.

Keywords: influence to formula gradient; convergence property; impulse noise reduction

for images.

Introduction

One of the most fundamental difficulties in image processing is creating an image
declaration [1] from noisy input data. The following phases may be used to breakdown the
two-phase approach: AMF of the median type is used in the first step in order to precisely
pinpoint the location of the impulse noise [2].

The approach that consists of two phases only recently saw publication in [3]. The
adaptive center-weighted median filter (ACWMF) [4] is used during the first phase, which
involves the identification of noise pixels by the use of the adaptive median filter (AMF)
[5] for random-valued noise. Let x denote the original image with M−by−N pixels and
A = {1, 2, 3, . . . ,M} × {1, 2, 3, . . . , N} be the index set of x. Let the set of indices of the
noisy pixels detected in the first phase denote by T , where T ⊂ A These were identified
during the first stage. In the second stage, the recovered noise pixels are then used to
minimize the following functional:

fα(u) =
∑

(i,j)∈T

[

|ui,j − yi,j|+
β

2

(

S1
i,j + S2

i,j

)

]

. (1)

Regularization parameters β and are also included

S1
i,j = 2

∑

(m,n)∈Pi,j∩T

ϕq (ui,j − ym,n) ,

S2
i,j =

∑

(m,n)∈Pi,j/T

ϕα (ui,j − ym,n) ,
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see [6]. The ϕα is an edge-preserving function where ϕα =
√
α + u2, and u = ⌊ui,j⌋(i,j)∈T

be a column vector of length c ordered lexicographically (c is the number of elements of
T ), and yi,j denote the observed pixel value at position (i, j). Noisy pixels are restored
without smoothing:

fα(u) =
∑

(i,j)∈T

[

2.S1
i,j + S2

i,j

]

. (2)

Optimization issues may be solved using nonlinear conjugate gradient algorithms due
to their cheap memory utilization and simple iteration:

Min fα(u), u ∈ R|T |, (3)

where f is continuously differentiable, see [7]. This article discusses the nonlinear conjugate
gradient technique, which is often used to solve (4) problems of the following type:

xk+1 = xk + αkdk, (4)

where αk is a step length and the search direction dk+1 are generated as:

dk+1 = −gk+1 + βkdk, (5)

where βk denotes the conjugate coefficient of the expression (see [3,8]). Global convergence
features of conjugate gradient methods are very interesting. The Hestenes–Stiefel (HS)
technique was one of the most efficient CG methods, but it failed to fulfill global
convergence criteria under conventional line search [9]. The Fletcher and Reeves (FR)
approach had the best convergence results [10]. Methods include:

βFR
k =

gTk+1gk+1

gTk gk
, βHS

k =
yTk gk+1

dTk yk
, (6)

where yk = gk+1−gk. See [9,11–14] for good research on contemporary CG approaches with
notable results. The conjugacy criteria makes the Hestenes–Stiefel formula acceptable. The
goal of these strategies is to speed up the convergence of the Newton method. According to
the idea of the quasi-Newton direction, the dk+1 in equation (5) comes close to representing
the quasi-Newton method. Thus, a parameter for the βk that:

−Q−1
k+1gk+1 = −gk+1 + βksk, (7)

where Qk+1 is a Hessian matrix, see Nazareth [15]. New research seeks a globally convergent
descent-conforming search direction to maximize conjugate gradient benefits. Numerous
novel optimization approaches exist. Theoretical and mathematically, idea-rich techniques
like [5] are effective. Numerical results show that the innovation technique [3,4,6] is more
effective than the optimization approach [16]. In [17], the step size is estimated using a
variety of line search techniques, including precise line search, as seen below:

αk = − gTk dk
dTkGdk

. (8)

We often use the strong Wolfe–Powell (SWP) [3] and [18] line search to determine the
step length. The definition of SWP line search is as follows:

f (xk + αkdk) ≤ f (xk) + δαkg
T
k dk,

dTk g (xk + αkdk) ≥ σdTk gk,
(9)
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where 0 < δ < σ < 1. In order to get more details, please refer to [1] and [19]. If you want
more details on the convergence analysis that our approach generates, please have a look
at reference [20].

As a reaction to this, we recommend to look into making some more tweaks, which, by
our assumption, can improve the numerical performance. These alterations are predicated
on the formulation of a new conjugate gradient parameter and the examination of the
quadratic model’s ability to analyze the convergence of that parameter’s value.

1. Deriving the New Parameter

The idea of the research is to derive the new formulas. Using the Taylor formula for
the objective function f(x), we have:

f(u) = f (uk+1) + gTk+1 (u− uk+1) +
1

2
(u− uk+1)

T Q (uk) (u− uk+1) , (10)

where the gradient is provided by:

gk+1 = gk +Q (uk+1) sk. (11)

It is possible to obtain the second-order curvature from (10) and (11):

sTkQ (uk) sk = (fk+1 − fk)− 2/3sTk gk. (12)

Using some algebra, we can derive:

sTkQ (uk) sk = 2/3sTk yk + 2/3 (fk − fk+1) . (13)

The matrix Q (uk) answer is:

Q (uk) =
2/3sTk yk + 2/3 (fk − fk+1)

sTk sk
In, (14)

where In is the identity matrix. If we swap (14) for (7), we obtain:

βk =

(

1− sTk sk
2/3sTk yk + 2/3 (fk − fk+1)

)

gTk+1yk

sTk yk
. (15)

By using the formula shown above, we are able to write:

βBN1
k =

1

sTk yk

(

yk −
sTk yk

2/3sTk yk + 2/3 (fk − fk+1)
sk

)T

gk+1. (16)

Using exact line search on equation (12), equation (16) yields:

βBN2

k =
1

sTk yk

(

yk −
sTk yk

2/3 (fk − fk+1)− 2/3sTk gk
sk

)T

gk+1 (17)

and

βBN3

k =
1

sTk yk

(

yk −
sTk yk

2/3αkgTk gk + 2/3 (fk − fk+1)
sk

)T

gk+1. (18)
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For convenience, these approaches are BN1, BN2, and BN3. New algorithm BN is given.
Algorithm BN
Initialization. Given x0 ∈ Rn, set k = 0, d0 = −g0.
Stage 1 : If ‖gk‖ ≤ ε then stop.
Stage 2 : Find αk by (8) and (9).
Stage 3 : Let xk+1 = xk + αkdk, and compute βk by (16-18).
Stage 4 : Compute dk+1 = −gk+1 + βkdk.
Stage 5 : Set k = k + 1 and go to stage 2.

2. Convergence Analysis for Uniformly Convex Function

Examining the global convergence of business intelligence algorithms is the next item
on the agenda. Some of the presumptions we make are as follows.

Assumptions:
(i) f(x) is bounded below on Rn and bounded on the set Ψ = {x ∈ Rn : f(x) ≤ f (x0)}.
(ii) g is Lipschitz continuous, i.e. there exists a nonnegative steady L such that:

‖g(u)− g(w)‖ ≤ L‖u− w‖, ∀u, w ∈ Rn. (19)

There is a constant Γ ≥ 0, which means that ‖∇f(x)‖ ≤ Γ, despite the fact that
certain function assumptions have been made. You may get additional information about
this topic in [7].

It is possible to demonstrate that the descent condition in the following lemma is
rather helpful.

Theorem 1. Only sTk yk 6= 0 and the search directions from (6) and (14) make dk+1 a
descent direction.

Proof. Since d0 = −g0, we have gT0 d0 = −‖g0‖2 < 0. Assume that dTk gk ≤ 0 is true.
Multiplying (5) by gk+1, to get:

dTk+1gk+1 = −‖gk+1‖2 +
(

1− sTk sk
2/3sTk yk + 2/3 (fk − fk+1)

)

gTk+1yk

sTk yk
sTk gk+1. (20)

Therefore,

dTk+1gk+1 = −‖gk+1‖2 +
(

1− sTk sk
sTk yk

)

yTk gk+1

sTk yk
sTk gk+1. (21)

By Lipschitz yields yTk gk+1 ≤ LsTk gk+1 and sTk yk ≤ LsTk sk. This lets us write:

dTk+1gk+1 ≤ −‖gk+1‖2 +
(

LsTk sk − sTk sk
sTk yk

)

L
(

sTk gk+1

)2

sTk yk
. (22)

However, since L-1 is small zero, observe that:

dTk+1gk+1 ≤ 0. (23)

Theorem might be proven.

✷
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Dai et al. [21] illustrate the general conclusion in the following way for any conjugate
gradient method using the Wolfe line search.

Lemma 1. Consider any conjugate gradient method (2) with dk+1 = −gk+1 + βkdk, as
a descent direction and αk chosen by the strong Wolfe line search if assumptions (i), (ii)
are true. If

∑

k>1

1

‖dk+1‖2
= ∞. (24)

Then
lim
k→∞

(inf ‖gk+1‖) = 0. (25)

As a result, we may prove the following conclusion using Lemma 1, see [4] and [21].
We may demonstrate the following outcome using the lemma 1 condition.

Theorem 2. If a constant µ > 0 exists that, for every k, satisfies the following criteria:

(∇f(u)−∇f(w))T ≥ µ‖u− w‖2, ∀u, w ∈ Rn. (26)

Assuming the conditions of Lemma 1, we have

lim
k→∞

(inf ‖gk+1‖) = 0. (27)

Proof. It is evident from (11) that

‖dk+1‖ = ‖gk+1‖+
∣

∣

∣

∣

(1− ω)
gTk+1yk

sTk yk

∣

∣

∣

∣

‖sk‖ , (28)

where ω = sTk sk/2/3s
T
k yk+2/3 (fk − fk+1). It is clear from using Cauchy’s inequality that:

‖dk+1‖ ≤ ‖gk+1‖+ |(1− ω)|‖gk+1‖ ‖yk‖
‖sk‖ ‖yk‖

‖sk‖ ≤

≤ (2− ω) ‖gk+1‖ .
(29)

Thus, ‖∇f(x)‖ ≤ Γ implies that:

∑

k≥1

1

‖dk‖2
≥

(

1

2− ω

)

1

Γ

∑

k≥1

1 = ∞ (30)

by applying Lemma 1, implies that lim infk→∞ ‖gk‖ = 0.

✷

3. Numerical Results

The effectiveness of the BN1, BN2, and BN3 algorithms for removing salt-and-pepper
impulse noise is shown via some numerical data (3). The following are the parameters for
the BN1, BN2, and BN3 procedures and Table 1 shows the investigation’s flow chart. The
first test photos may be seen in Table 1. All simulations are run using MATLAB 2015a on
a PC. We contrast the BN1, BN2, and BN3 strategies to the FR method to see how well
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they perform, see [22–25]. Keep in mind that in this study, our primary concern is how
rapidly we can resolve the minimization problem (3). The PSNR, or signal-to-noise ratio,
is a statistic used to assess the effectiveness of recovered pictures:

PSNR = 10 log10
2552

1
MN

∑

i,j

(

ur
i,j − u∗

i,j

)2 , (31)

where the pixel values of the restored picture are marked by ur
i,j and the values of

the original image are denoted by u∗
i,j. the original image’s values were lost during the

restoration process. The following are some of the circumstances that will result in the
ineffectiveness of either approach:

|f (uk)− f (uk−1)|
|f (uk)|

≤ 10−4 and ‖f (uk) || ≤ 10−4 (1 + |f (uk)|) . (32)

The results of the tests are shown in Table 1 below. The report also includes the highest
signal-to-noise ratio, the number of function evaluations, and the overall number of
iterations (PSNR).

Tables 1 – 3 show that FR approaches BN1, BN2, and BN3 are quickest with the fewest
iterations and function evaluations. All three strategies provide high PSNR. Figures 1, 2
and 3 show FR, BI1, BI2, and BI3 restoration results. These findings suggest that BN1,
BN2, and BN3 may repair damaged photographs.

Table 1
Numerical results of FR and New BN1 algorithm

Image Noise
level r
(%)

FR-Method BN1-Method

NI NF
PSNR
(dB)

NI NF
PSNR
(dB)

Le 50 82 153 30,5529 58,0 109,0 30,3946
70 81 155 27,4824 56,0 104,0 27,4182
90 108 211 22,8583 55,0 101,0 22,7628

Ho 50 52 53 30,6845 39,0 72,0 34,7204
70 63 116 31,2564 44,0 79,0 31,1129
90 111 214 25,287 53,0 95,0 25,0078

El 50 35 36 33,9129 30,0 53,0 33,8753
70 38 39 31,864 34,0 60,0 31,7971
90 65 114 28,2019 43,0 81,0 28,1453

c512 50 59 87 35,5359 35,0 68,0 35,3054
70 78 142 30,6259 40,0 79,0 30,6412
90 121 236 24,3962 51,0 101,0 24,8992

The provided methods outperform the FR method in terms of peak signal to noise
ratio, iterations, and function evaluations.

Conclusions

In conclusion, we provided a new conjugate gradient formula that had been changed
and presented the BN1, BN2, and BN3 conjugate gradient procedures. In addition, we
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Table 2
Numerical results of FR and New BN2 algorithms

Image Noise
level r
(%)

FR-Method BN2-Method

NI NF
PSNR
(dB)

NI NF
PSNR
(dB)

Le 50 82 153 30,5529 55,0 111,0 30,3861
70 81 155 27,4824 54,0 108,0 27,3853
90 108 211 22,8583 53,0 105,0 22,8229

Ho 50 52 53 30,6845 35,0 70,0 34,9326
70 63 116 31,2564 43,0 84,0 31,0397
90 111 214 25,287 57,0 111,0 24,8616

El 50 35 36 33,9129 27,0 52,0 33,8617
70 38 39 31,864 31,0 60,0 31,7785
90 65 114 28,2019 39,0 75,0 27,8699

c512 50 59 87 35,5359 37,0 74,0 35,4821
70 78 142 30,6259 40,0 81,0 30,8268
90 121 236 24,3962 53,0 107,0 25,0205

Table 3
Numerical results of FR and New BN3 algorithms

Image Noise
level r
(%)

FR-Method BN3-Method

NI NF
PSNR
(dB)

NI NF
PSNR
(dB)

Le 50 82 153 30,5529 55,0 107,0 30,6604
70 81 155 27,4824 58,0 113,0 27,3285
90 108 211 22,8583 51,0 102,0 22,8401

Ho 50 52 53 30,6845 34,0 68,0 34,6449
70 63 116 31,2564 42,0 83,0 31,0143
90 111 214 25,287 56,0 108,0 25,0585

El 50 35 36 33,9129 29,0 55,0 33,8908
70 38 39 31,864 34,0 65,0 31,9092
90 65 114 28,2019 44,0 85,0 28,3056

c512 50 59 87 35,5359 33,0 66,0 35,3312
70 78 142 30,6259 41,0 83,0 30,6964
90 121 236 24,3962 50,0 101,0 24,762

spoke about the repercussions that these new discoveries may have. The Wolfe line search
approach was used in order for us to identify its worldwide convergence. Simulation-based
research has shown that BN1, BN2, and BN3 have the ability to significantly reduce the
number of iterations and function evaluations while maintaining the same degree of picture
quality.

Acknowledgment. The authors are very grateful to the University of Mosul / College of
Computers Sciences and Mathematics for their provided facilities, which helped to improve
the quality of this work.
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Fig. 1. Demonstrates the results of algorithms FR, BN1, BN2 and BN3 of 256 * 256 images

Fig. 2. Demonstrates the results of algorithms FR, BN1, BN2 and BN3 of 256 * 256 images
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Fig. 3. Demonstrates the results of algorithms FR, BN1, BN2 and BN3 of 256 * 256 images
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ВЛИЯНИЕ НА НОВЫЕ ФОРМУЛЫ ГРАДИЕНТА ДЛЯ УДАЛЕНИЯ
ИМПУЛЬСНЫХ ШУМОВ ИЗОБРАЖЕНИЙ

Басим А. Хасан1, Али Ахмед А. Абдулла1

1Мосульский университет, г. Мосул, Ирак

В методах сопряженных градиентов формула сопряжения часто является основ-

ной точкой концентрации. Техника сопряженных градиентов используется для реше-

ния проблем, возникающих в процессе восстановления изображения. Используя квад-

ратичную модель, для операции будет получено совершенно новое сопряжение коэф-

фициентов. Алгоритмы демонстрируют как локальную, так и глобальную сходимость

и спуск. Численное тестирование показало, что недавно разработанный метод намного

превосходит тот, который существовал до него. Недавно созданная стратегия сопря-

женного градиента имеет более высокую производительность, чем метод сопряженного

градиента FR, который является отраслевым стандартом.

Ключевые слова: влияние на градиент формулы; свойство конвергенции; им-

пульсное шумоподавление изображений.
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