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The deterministic and stochastic Wentzell systems of Dzekzer equations in a hemisphere
and on its boundary are studied for the first time. The deterministic case is characterised
by the unambiguous solvability of the initial problem for the Wentzell system in a specific
constructed Hilbert space. In the case of the stochastic hydrodynamic system “reservoir-
well-collector”, the theory of Nelson—Glicklich derivative is applied and a stochastic solution
is constructed, which allows us to determine the prognoses of quantitative changes in the
geochemical regime of groundwater under non-pressure filtration. It should be noted that
for the filtration system under study, the non-classical Wentzell condition is considered,
since it is represented by an equation with the Laplace — Beltrami operator defined on the
boundary of the domain, understood as a smooth compact Riemannian manifold without
an edge, and the external influence is represented by the normal derivative of the function
defined in the domain.

Keywords: Wentzell system; Dzekzer equation; Nelson—Glicklich derivative.

Introduction

Let Q € R", n > 2, be a region with boundary I' of the class C*°. On a compact
QUT we consider a system of two Dzekzer equations [1], modelling the evolution of the
free surface of the filtering fluid

(A — A)uy = apAu — BoA%u — you, u = u(t,z), (t,r) € R x Q, (1)

(A — Ay = a1 Av — B1A%0 + % — v, v=uv(t,x), (t,z) € R x T, (2)
0

6—3:0, (t,z) ER x T, (3)

tru=v, ma R xT. (4)

The symbol A in (1) denotes the Laplace operator in the region 2, and in (2) the same
symbol denotes the Laplace — Beltrami operator on a smooth Riemannian manifold T.
The symbol v = v(t,z), (t,z) € R x I' stands for the normal R x I" external to R x €.
The parameters «q, ayq, A, Bo, 51,70, 71 € R describe the medium.

The condition of the form (2) and initial conditions (4) have been studied previously
in various situations [2,3], so we will only give a brief history. It first appeared in [4] when
constructing the Feller semigroup generator [5] for multidimensional diffusion processes in
the bounded € region. In [6] it was shown for the first time that (2) arises naturally
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in biophysics to describe diffusion inside a cell and on its membrane. This approach
to the study of problems where boundary conditions are treated not as limit values of
the desired function and its derivatives, but as a description of some processes on the
boundary, possibly only partially depending on the processes inside the region, led to the
construction of a new direction in potential theory [7,8|, where solutions of one-phase and
two-phase Wentzell problems with the use of repeated double and simple layer potentials
were obtained. Another approach is based on the ideas and methods of semigroup operator
theory. In [9] it was first shown that the operator including the Laplace operator A
inside the region ) and the Laplace — Beltrami operator A on its boundary 0f) is a
generator of a Cy-semigroup. In [10] this result was used in solving a number of applied
problems. The first results of research in this direction were summarised in [11]. Moreover,
in [12-15| analyticity conditions for solving Cy-continuous semigroups of operators were
found. Finally, in [16] the case when the operator A s replaced by A% in Q region, while
on the boundary the Laplace — Beltrami operator A remains the same.

Our approach to the study of the problem (6) — (9) is unconventional — intending in
the future to consider different cases of the domain € and the boundary I' (for instance,
Q2 is a bounded connected Riemannian manifold with edge I') we consider it necessary to
call (1), (2) a system of equations, albeit defined on sets of different geometric dimension.
This approach is supported by the fact that equations (1) and (2) describe the same
physical process of moisture filtration. The term “boundary conditions” should be reserved
for equations defined on the boundary (edge) of a region (manifold) and having a lower
order of derivatives on spatial variables (see the classical treatise [17]).

In the simplest case, we will study the solvability of system (1) — (3): Q = {(r,0, ¢) :
r e [0,R),0 € [0,5],¢ € [0,27]} in R?, but T' = {(A,¢) : 0 € [0,5),¢ € [0,27)} is a
hemisphere with boundary. In this case, (1) — (3) is transformed to the form

()‘ - AT,Q#’)ut = OdOATﬁ,SOu - BOAQ,G,WU - YoU, U = u(ta r, 97 ()0)7 (ta T, 97 ()0) € R x Qa (5>

r

(/\ - Ae,w)vt - OélAG,l,D/U - BIA?",G,QOU + aRu - Mv, v= U(tu 07 ()0)7 (tu 07 ()0) € R x Fv (6>

Oru =0, v=uv(t,0,p), (t,0,p) e R x T, (7)
where
0 0 0? 0?
A =(r—R)— —r)— S I
e = (1= R)g ((R T)ﬁr) "o T o
0? 0? 0
Npp=5=+55 Or=7-| (8)
Y002 Op? or|,_p
0? 0? 0
Doy =zt s Op=nr|
Y002 Op? or|,._p

To the given system we add the matching condition (4) and equip it with initial conditions

w(0,7,0,0) =up(r,0,¢), v(0,0,p)=uv(0, ). 9)
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Let us call the solution of the problem (4) — (9) a deterministic solution of the Wentzell
system. We note that by transforming the operator (17) to Cartesian coordinates we obtain

9, 5, 5, 5 o\ 07 zy(x? + y? + 22) 0?
Aw:%“/a—y*@*("‘ *y)aw( PEEREE S o ve
2 2 28 92 2
2 2T Y 2 3_ 2 2 2 3_
+(x T )3y2+(x I +2)322'

We shall transfer the consideration of the Laplace operator in standard spherical
coordinates to our future studies.

In addition to the introduction and the list of references, the paper contains two
parts. The first part considers the existence and uniqueness of a deterministic system
of Wentzell equations in a hemisphere and on its boundary. The second part contains
abstract reasoning consisting in the construction of the space of ($)-valued) K-“noises”
and the proof of existence and uniqueness of the stochastic system of Wentzell equations
in the hemisphere and on its boundary.

1. Deterministic Wentzell System

Let us consider the following series

u= > exp (t 50k4)\+0;€02/€270) (R];I:)k (ak sin k6(sin kp+cos kp) + by, cos kO (sin kp+
k=2

+ cos k(p)) + > exp (t%) (ck sin k6(sin kp + cos k) + (10)

k=1

+dy cos kO(sin ko + cos k"P)) )

where

2 R

(R—1r)k .

ar = [ do [ uo(r,0, @)T sin k@(sin kp + cos ky)rdr,
0 0

(R—r)"

27 R
b = / de / uo(r, 0, ) =g cos kf)(sin kip + cos kyp)rdr,
0 0

2 %
cr = /d(p / vo(0, ) sin kO(sin ky + cos ky)do,
0 0

27 %
dy, = /dgp / vo(0, @) cos kO(sin ky + cos ky)db.
0 0

It is not complicated to notice that the constructed series above is a formal solution of
(5). Furthermore, if the series in (10) converges uniformly, then we have a solution of the
problem (5), (9), where dgu = 0, Au = 0. Taking this into account, we can construct a
solution of problem (6), (9)

= —Bik* — oy k? —
1 aq il .
v = E exp| t 5 Chn COSkp 4+ dj ,sinke |, (11)
Atk
k=1
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where in the case ag = a1, By = 51, 70 = 71 the solutions of the problem (6) — (9) will
satisfy the matching condition (4).

The closure of the lineal span{(RF)™'(R — r)*sin kf(sin ke + coskyp), (R*)"1 (R —
r)¥cos kb -(sinke + cosky): k € N\{1},7 € (0,R),0 € [0,Z],¢ € [0,27)} generated by
the scalar product

2w

MWZiW/W

0

o(r, 0,0)0(r, 0, )r? sin 0d6,

o\
(VB

we denote by the symbol A(2). Then, the closure of the lineal span{sin kf(sin kp+cos k),
cos kf(sin kyp +coskp): k € N,0 € [0, 3], ¢ € [0,27)} by the norm generated by the scalar
product

27r%
(o, 0) = [ do [ (r,0,0)0(r,0,0)do,
[]

we denote with the symbol A(T").
Thus, the following theorem occurs.

Theorem 1. For any uy € A(Q) and vy € A(I') such that (4) is satisfied, and for
any coefficients ag, a1, A, Bo, B1,70, 71 € R, such that the following condition is satisfied

ag = o1, By = Bi, Y0 = M, a X # k?, where k € N, cthere exists a single solution
(u,v) € C*A(Q) @ A(T')) of the problem (4) — (9).

2. Stochastic Wentzell System

Let Q = (Q,A4,P) be a complete probability space with probability measure P,
associated with the o-algebra A of subsets of the set 2, and let R be the set of real
numbers endowed with a Borel o-algebra. A measurable mapping & : 2 — R is called a
random variable. The set of random variables with zero expectation and finite variance
forms a Hilbert space Ly with scalar product (&1, &) = E& 6.

Let 3 C R be an internal. We call the measurable mapping n : J x 2 — R, a stochastic
process, for each fixed w € Q the function n(-,w) : 3 — R is its trajectory, and for each
fixed ¢ € J the random variable n(t,-) : Q@ — R is its cross section. We call a stochastic
process n = n(t), t € J, continuous stochastic process if almost probably all its trajectories
are continuous (i.e. if almost all w € A the trajectories n(-,w) are continuous functions).
A multitude of continuous stochastic processes forms a Banach space, which we denote by
the symbol C(J; L) with norm

HnHCLz = SUP(DU(ta W))1/2'
ted

Let Ag be an o-subalgebra of o-algebra A. Let us construct a subspace LY C Lj of random
variables. of random variables measurable with respect to Ag. We denote by 1T : Ly — L
the orthoprojector. Let & € Ly, then II¢ is called the conditional mathematical expectation
of the random variable £ is denoted by E({|.Ag). We fix n € C(J;Ly) and ¢t € J, denote by
N/ the o-algebra, generated by the random variable n(t), and define E] = E(-|N").
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Definition 1. Let n € C(J;Ly). The derivative of the Nelson—Glicklich process 7% of
stochastic process n at a point t € J is a random variable

7 () = 1( lim E! (n(HAtw)—n(tw)) N

2 \ At—0+ At
o (1) —n(t — At,-)
+ A%l—rg(l)-f— E; ( At ’

iof the limit exists in the sense of a uniform metric on R.

If the Nelson — Glickich derivatives 7 (t,-) of the stochastic process 7(t, -) exist at all (or

p.c.) points of the interval J, then we say that the Nelson—Glicklich derivative i (t,-)onJ
(p.c. on J) The set of contmuous stochastic processes having continuous Nelson—Glicklich

derivative 7 orm a Banach function C'(J;Ly) space with norm
o 1/2
Inllorn, = sup (D(t,w) + D (1,))
te

Let us further define by induction the Banach spaces C!(J;Ls), [ € N, of stochastic
processes whose trajectories are Nelson—Glicklich differentiable on J up to order [ € {0}UN
inclusive. Their norms are given by the formulas

. 1/2
o, = sup (ZD 509 w>) |
€3 \ i

Here we will consider the zero-order Nelson-Glicklich derivative as the initial random
process, e.g. 1) = 7. Note also that the spaces C'(J;Ls), I € {0} UN, for the sake of for
brevity we will call the spaces of “noise”.

Let us proceed to the construction of the space of random K-values. Let $) be a real
separable Hilbert space with orthonormalised basis {yy}, monotone sequence K = {\;} C
R, such that Z Af < 400, and also the sequence {{} = & (w) C Ly random variables

k=
such that ||&||L, < C, for some constant C' € R, and for all £ € N. Let us construct an

$-valued random K-values i,
w) = Z M€ (w) o
k=1

Completion of the linear envelope of the set {A\r&xr} by norm

o 1/2
sy, = (z Aznsk)
k=1

is called the space of ($-valued) random K-values and is denoted by the symbol HgLs. It
should be obvious that the space H Ly is Hilbertian, with the random K-value £ = £(w) €
HxL,. Equivalently, we define the Banach space of ($-valued) K-“noises” C! (J; HyLs),
[ € {0} UN, to be an enlargement of the linear envelope of the set {A\ymrer} by norm

- 1/2
oyt = sup (zxzzm,&m) |

l
m=1
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where the sequence of “noises” {n} C C'(J;Ly), [ € {0} UN. Obviously, the vector
n(tu w) = Z )‘knk(t7 w)(pk:
k=1

lies in the space C'(J;HgLy), if the sequence of vectors {n;} C C!(J;Lsy) and all their
Nelson—Glicklich derivatives up to and including order [ € {0} UN are uniformly bounded
in norm || - ||cip,-

Example. Vector lying in all spaces C'(R,; HxLy), I € {0} UN,

Wk(t,w) = Z Bk (t, w) or,
k=1

where {3} C C(J; Ls) is a sequence of Brownian motions, is called an ($-valued) Wiener
K-process.
Let 4 (§) now be a real separable Hilbert space with orthonormalised basis {yy}
({¢x}). Let us introduce a monotone sequence K = {\,} C {0}UR such that Y A2 < 4o0.
k=1
By the symbol UgL, (FkLs) we denote the Hilbert space. which is a replenishment of
the linear envelope of random K-values

E=> Mbupr, & € Ly, (C =Y Gt G € L2> )
s s

by norm
InllG = AiDé& <HWH% = ZuiD<k> .
k=1 k=1

Note that in different spaces (UxLs u FxLy) the sequence K can be different (K = {\;}
and UgLy n K = {11} B FxLs), but all sequences marked by K, must be monotone and
summable with square. All results will generally be true for different sequences {\;} and
{p1}, but for the sake of simplicity we will restrict ourselves to the case A\, = .

Let A : 4 — § be a linear operator. By the formula

AL =) MbApy (12)
K=1

we define a linear operator A : ULy, — Fklo, and if the series in the right-hand
side of (12) converges (in the FgLy metric), then £ € domA, and if diverges, then
¢ ¢ domA.Traditionally the spaces of linear continuous operators £(UgkLy; FxLs) and
linear closed densely defined operators are traditionally defined. The following holds

Lemma 1. (i) Operator A € L(I;F) is exactly and only if A € L(UkLy; FxLs).
Since it is clear to see,

|AL|r < Z A D& || Apr|3 < const Z A D&, = const ||€]|u.
k=1

k=1
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(ii) Operator A € Cl(; ) is exactly and only if A € Cl(UgLy; FxLs).

For reasons of simplicity, let U = {u € WF(Q) W (T) : dgu = 0}, F = La(Q) ® Lo (T).
Following the algorithm outlined above, we then construct the spaces of random K-values.
A random K-value & € UgLsy has the following form

E=> Mwpn, (13)
=1

where {¢} } is the family of eigenfunctions of the modified Laplace operator A, g, € L(LL; §)
orthonormalised in the sense of the scalar product (-,-) from Ly(2). Let us consider the
linear stochastic Wentzell system of the moisture filtration equation in the balloon and at
its boundary. In this case (1), (2) is transformed to the form

(A= Do) = 00 — BoAT g o0 — Yo, 1 € C(Ry; Uk Ly), (14)
(A= Dgp)me = 1Dy on — ﬁlﬁie,(ﬂ] + 0gn — mn,n € C(Ry; UkLy), (15)
Orn = 0,1 € C*(Ry; UkLy), (16)
where
0 0 0? 0?
A,«,g#, = (T’ — R)E ((R — T)E) + w + 8—902,
0? 0? 0
AVIRES 902 + 8—902’ Or = ar r:R’ (17)
0? 0? 0
Npw=L 4+ & 922
00 =5 T o IR

For this system we add a matching condition and equip it with initial conditions

n(0) =mo (18)

The solution of the problem (14) — (18) we call the stochastic solution of the Wentzell
system.

Theorem 2. For any ny € UxLy(Q) and for coefficients oy, a1, A, Bo, B1, 70,71 € R, such
that the following condition ag = ay, Bo = B1, Yo = 71, and X\ # k? is satisfied, where
k € N, there ezists a single solution n € C*(Ry; UkLy) of the stochastic Wentzell system
(14) - (18).

Proof. The existence and singularity of the solution are proved by analogy with the
deterministic case due to the validity of Lemma 1.
([

Conclusion

We constructed the resolution group in the Cauchy—Wentzell system in the hemisphere
and its biundary. Further, we plan to continue the results of the paper by applying the
Wentzell conditions in directions related to [18-20].
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AHAJIN3 CTOXACTUYECKOI CUCTEMBI
BEHTIIEJII, COCTABJIEHHOI1 13 YPABHEHIII BE3SHAIIOPHOI
®UNJIBTPAIIN B IIOJIVC®EPE 1 HA ET'O I'PAHUIIE

H.C. Ionuapos', IA. Csupudiox!
'Oxkm0-Ypasbekuit rocyapeTBeHHbIi YHIBEPCUTET, T. e a0nHcK,
Poccniickas ®enepariust

Buepsbie n3yueHsl 1eTepMIHIPOBAHHAS U CTOXACTHIECKas cUCTeMbl BenTiiesist ypasne-
Huit /I3eknepa B noJsiycdepe u Ha ero rpasuie. B 1eTepMUHIPOBAHHOM CJIydae YCTaHOBJIEHA,
OJ/IHO3HAYHAsT PA3PENINMOCTb HaYa JIbHON 3a1a9n Jijisi CUCTeMbl BeHTIe IS B CcrieruduaecKoM
ITOCTPOEHHOM THUJILOEPTOBOM ITPOCTPAHCTRBE. B cilydae cTOXacTUIeCKOHN I'uIpOIMHAMUIECKON
CUCTEMBI <IIJIACT — CKBayKMHA — KOJUIEKTOP> HCIIOJIb3yeTcs Teopus npoussomHoit Hesnscona
— I'mukinxa u cTPOUTCS CTOXACTUIECKOE PelleHne, KOTOPOe ITO3BOJISIET OMPEIE/ISATh IIPOrHO-
3Bl KOJINYECTBEHHOI'O M3MEHEHUsI T€OXMMIIECKOr0 PeKUMa, IPYHTOBBIX BOJI IIpU Oe3HAIop-
Hoit puabrparuu. OTMeTHM, 9TO JJjisl U3yIaeMOil CUCTeMbl (PUJIBTPAIIMYE PACCMATPUBAJIOCH
HEKJIACCUYECKOe ycJIoBHe BeHTIessl, OCKOJbKY OHO IIPEJICTABJIEHO ypPaBHEHUEM C OIepa-
topom Jlammaca — Benbrpamu, 3aganubiM HA rpaHuile 00JIACTH, IOHUMAEMOM KaK TJIAKOe
KOMITAKTHOE PHMAHOBO MHOroobpasmue 0e3 Kpasi, IpUYeM BHEIIHEe BO3EiICTBUE IIPEICTAB-
JIEHO HOPMAJIbHON POU3BOIHON DYHKINN, 3aJaHHON B 00/IaCTH.

Karouesvie caosa: cucmema Benmueas; ypasuenue Jlsexuepa; npouszeodnas Heavcona

- I'nuxauza.
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