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The thermal state of the elements of heavily loaded tribo-units is among the most
important parameters affecting their performance. The temperature of the lubricating layer
of bearings determines to a large extent their load-bearing capacity. The heat balance
equation used to estimate the temperature of friction pairs fails to yield the temperature
fields and the regions of their maximum values. This fact makes our problem important.
We examine a mathematical model and a method for calculating the thermal state and
thermohydrodynamic characteristics of heavily loaded sliding bearings, taking into account
the non-Newtonian properties of the fluid as well as the heat exchange processes between
the lubricating layer and the surrounding moving surfaces of tribo-units. To solve the energy
equation, we propose to use finite difference approximation methods. To create the difference
analogs of the energy equations for some structural elements and thin lubricant layers, we use
the Pismen—Reckford scheme of implicit alternating directions. We present, the calculated
hydromechanical characteristics of the connecting rod bearing of a heat engine. We obtain
three-dimensional distributions of temperature in the lubricant.

The results show that, if we allow for convective heat transfer in the radial direction,
the processes of heat exchange between the lubricating layer and the surrounding moving
surfaces enable us to determine more accurately the mean lubricant temperature and the
thermal stress of a tribo-unit as a whole. Our method can be used to assess the performance
and efficiency of heavily loaded tribo-units of piston and rotary machines.

Keywords: bearing; generalized energy equation; partial differential equations; boundary
value problems.

Introduction

The problem of improving the reliability and durability of friction units in machines
has always been a major challenge of modern engineering. The rising power of thermal
machines and the rising demands for durability and fuel efficiency result in the increased
loading of tribo-units (TU). In this regard, it is important to choose methods for solving
concrete problems, as well as to create methods for physical and mathematical modeling
of friction and the wear of friction units.

Modern mechanical engineering is based on advanced technologies. Innovative
computational methods and computer technologies allow engineers and researchers to
simulate and calculate TU for different machines and consider a number of design,
operation, and other parameters affecting the performance of friction units. However,
the thermal processes occurring in a heavily loaded bearing are of great importance for
understanding the performance of friction units. Usually they are treated on the basis
of a solution to the generalized energy equation (heat transfer equation) for a thin layer
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of viscous incompressible fluid between two arbitrarily moving surfaces. This equation
involves both convective heat transfer in the lubricant and heat transfer by conduction.

Thus, our research aims at developing models and algorithms to solve the problems of
TU dynamics taking into account the temperature distribution in the lubricating layer, the
non-Newtonian properties of the lubricant, and the geometry of friction surfaces bounding
the thin lubricating layer.

1. Solution

To solve the stated problem, consider a circular cylindrical radial bearing, where the
bearing (bushing) 1 and the journal 2 rotate round the axes O;Z;, with ¢ = 1,2 passing
through their centers O; with absolute angular velocities w;. The lubricating layer of non-
Newtonian fluid is bounded by the surfaces of the bearing and the journal (see Fig. 1).
Here © = rp with r &~ r; & re, where r; = 1r1(p,t) and ro = r3(p,t) are the radii of
bushing (the inner surface) and the journal; ¢ is the angular coordinate measured from
the axis O;X; rigidly fastened to the bushing. The axes Ox and Oz of the coordinate
system Ozyz, in which we consider the processes in the lubricating layer, lie in the plane
of the reference surface, and the axis Oy is perpendicular to it. The external force F ()
depending on time ¢ acts on the pin in the plane Ozxy in the central cross section z = 0.
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Fig. 1. Coordinate systems for solving the heat problem

To determine the field of hydrodynamic pressures in the thin lubricating layer, use the
generalized Reynolds equation [1-3]. For a non-Newtonian fluid we can write it as
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where ¢ and z are the angular and axial coordinates; p = p/pp is the dimensionless density;
po is the density of the Newtonian fluid; p = (p — pa) ¥*/powo, ¥ = ho/ry, Z = z/r2 with
—a < z < a, and t = wyt are the dimensionless hydrodynamic pressure, relative radial
clearance, width coordinate of the bearing, and time; hq is the radial adjusting clearance;
a = B/D is the relative width of the bearing; po is the characteristic viscosity of the
lubricant; p, is atmospheric pressure; B, D = 2ry, and ro are respectively the width,
diameter, and radius of the pin; wy; = (wy — wy) /wp is the dimensionless angular velocity
of the pin. The dimensionless thickness h of the film and its derivative Oh / Ot are defined
as
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h=1-xcos(p—3), Oh/OT=—xcos(p—5) —xdcos(p—0),

where Y is the relative eccentricity and ¢ is the angle of relative position of the center line,
furthermore,

h
o = / g* /ntdy, k=0, 1, 2,
0

where pi* is the dimensionless non-Newtonian viscosity of the lubricant, which is a function
of shear rate, temperature, and pressure; finally, 4 is the dimensionless coordinate across
the lubricating layer.

Use a multigrid method to integrate (1) with the Swift-Stieber boundary conditions,
taking into account the presence of sources of lubrication (holes or grooves) on the friction
surfaces [4]:

plp,z2==%a) =0, p(p, 2) = p(p + 27, 2), p(e,z) >0 on (p,2) € €1
p(p, 2) =ps, S=1,2..., 57,

where the region (), stands for a source of lubricant, in which the pressure is constant and
equals the supply pressure p,, while S* is the number of sources of lubrication. Express
the dependence of viscosity on the shear rate and pressure as |5, 6]:

fy-exp(B8-p), I,<10* ¢t
A= pe T exp (Bhp), 100 < L < 10° ¢ (2)
[L2~exp(ﬁ-p), I > 106 ¢~ 1.

The parameter n characterizes the degree of non-Newtonian behavior and (3 is the pressure-
viscosity coefficient of the lubricant, which is a function of temperature.

According to the model (2) in region 1 (with Iy < 10* ¢™!) the lubricant behaves as
a Newtonian fluid with viscosity u; (T, p). In region 2 (with 10* < I, < 10° ¢™') viscosity
decreases following a power law. In region 3 (with 7 > 10%¢™1) the lubricant is considered
as a Newtonian fluid with viscosity pa (7, p).

Let us express in a dimensionless form the equations for the velocities of a volume
element of the lubricant and their derivatives:

*_@_ "y _@_ _n+1'@ 7 — [ 4 _é_ _n+1.la_ﬁ
Ve = &0 W21+<¢1y ¢O¢Oy)h a(p?‘/z_ Gbly (Eo(b()y h a 07
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Write down the flux of the lubricant across the sections of unit length along the x and 2

coordinates as J J
q_my = / deg? q_zy = / Vzdg
0 0

The generalized energy equation (heat transfer equation) for the lubricating layer of
viscous incompressible fluid, accounting for small thermal conductivity along the z and z
axes, is [6-8]

peoar + po Vigs + Vo + Voo | — Ao = Ds, (4)

oT oT oT oT o*T
ox oy 0z oy?

where p, ¢y, and A\g are the density, specific heat, and thermal conductivity of the lubricant
(taken to be constants); V,, V,, and V, are the components of the velocity vector of a volume

2 2
element of the lubricant; Ds = p* {(%) + <%_‘;z> } is a dissipative function.

Introduce the following notation: T' = T /Ty, is the dimensionless temperature at a point
of the lubricating layer; Ty is characteristic temperature; § = y/h, h = h/hg, ¥ = hi/r,
Ve = VyJwor, Vy =V, Jwor, V. = V. Jwyr, i = j1/ g, where hjj is the characteristic thickness
of the film for the central position of the pin, Pe = pypcowols/ N is the Peclet number,
kr = popcoTorh? /(wopo). In this case, we can write the energy equation for the lubricating
film of the bearing with non-Newtonian lubricant in dimensionless form as

or _or _or _or 1 1 T 1 1

— =V —D——V.e—+—-— - ——+— - —Ds, 5
By ap "oy oz TPe W OE hr i’ )

where

D=3 " o, 0z | (6)
This differential equation is linear with respect to derivatives. The coefficients of the
convective terms depend on ¢, ¥, Z, and t. The equation is parabolic in time, and so we
impose initial and boundary conditions.
Determine the distribution 77 (1, Ry, ) of temperature in the bushing, where R; is
the radial coordinate (see Fig. 1), by solving the equation for transient heat flow, which
in cylindrical coordinates and dimensionless variables becomes

1 T 7 — B —
_Oh N O(hgzy) N h@qzy

ot 8R? R, OR, Rf ot (@)

oT, <0271 10T, 1 a?Tl>

= .
Here Ry = Ry/r and T, = Ty /Ty; furthermore, &; = A\;/ (c1p172wp) is the dimensionless
coefficient of heat transfer from the bushing to the environment, with 1 ~ ry ~ r, while
p1, c1, and A; are the density, specific heat, and thermal conductivity of the material of
the bushing.
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Introduce coordinate system Ox1y;z; and dimensionless variables
1= (Ri—r)/(rs—r)=(R1—1)/(Fs— 1), 73=r3/r,

where r; and r3 are the radii of the inner and outer surfaces of the bushing. Then (7)
becomes

871 _ ( 1 8271 + 1 871 + 1 8271) (8)
—_— = .
ait "\ 1? 0 D+ - Dalm -0 om [+ (s — ) 042

Similarly, determine the distribution T5(y, Ry, t) of temperature in the pin by solving
the equation for transient heat flow, which in cylindrical coordinates and dimensionless
variables becomes

oT, _ [0°Ty 1 0Ty 1 0%T,
= (2 . (9)

-z — = = —

ot OR, R:0R: TR, 0¥3
Here Ry = Ry/r and Ty = Ty /Ty; furthermore, Gy = Mg/ (capar?wy) is the dimensionless
coefficient of heat transfer from the pin to the environment, while py, co, and Ay are the

density, specific heat, and thermal conductivity of the material of the pin.
In coordinate system Ozsys29 introduce the dimensionless variables

gQZ(RQ—T4)/(T2—T4):(Rg—fgl)/(]_—ﬂl), f4:’l"4/7“7

where 74 is the radius of the inner surface of the bushing. Then (9) becomes

oTy ( 1 6272+ 1 aTQJr 1 8272) (10)
— =
dt P\ —7)? 05 [Fat (L —7a)fo) (1 —7a) 0o [t (1 — 7)Ga]° 02

Let us state the boundary conditions to integrate the heat subproblem (5), (8),
and (10). Since the temperatures of the lubricant and the bushing are periodic in the
circumferential direction, we have

T(g07g7£> :T<QO+27T,Q,Z>, Tl(¢7R17t_>:T1<90+27T7R17{>'
On the outer surface of the bushing assume the free convection hypothesis

aqr — —

On the common surface of the lubricant and the bushing impose the continuity condition
for the heat flux (the coupling condition)

o,
OR

T,

B Ao 0T}
— pr— —_— r _— 1
o (7 = 1)

- Ahip 07

§=0

On the surfaces of the lubricant shared with the sleeve and spike impose the equal
temperature condition

T(@?@ = 072?) = Tl(gpagl = 075_ 2f_C)7 T(@,g = 171?) = TQ(t__ 2?C)
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2. Finite-Difference Approximation for the Equations

of the Thermal Subproblem

Express (5), (8), and (10) in the dimensionless form:

Ds

aq

(11)

(12)

(13)

[1+ (73 — )i

Qo

"

oT oT oT 0T
— =K —+Ky—+ K;— + K
Bl 18(,0+ Qang 38g2+ 45
T, 0T, oT, 0T,
1l _K | TP it
or ~ "o " Mop o
T 0T, OT s 0T,
- K Ky— + Kjg——.
o1 sgpr Ty, TGS
Here we put ~
T="T,
B _ B _ 1
Ki(p,9,t) = = Vo, Ko(p,7,t) = =D, K3(p) = WJQ(SO)
1 aq
Ky =a——— K(i) = K1) =
B PRV A (PR (A T M
1 &g
Ke = ao—— Kolio) = Koolio) =

For generality, we also replaced ¢, 71,92 = y and T, Ty, T» = T.

[Fa+ (1= 7))

Express the system of equations for the two-dimensional distribution of temperature
in the lubricating layer, bushing, and pin in the operator form

T+ A Ly(T)+ B Ly(T) = C - Lyp(T) + D - Ly (T') + E,

where
f - K — K> 0 K;
T = 7:1 , A= 0 , B=| -Kgs | ,C=| K7 D=\ K;j
T, 0 —Ky Ko Ky
oT oT oT 0*T
T = §>LW(T) = %aLy(T) = a_ngso(T) = a_gﬂ’Lyy(T)

N

(14)

For the finite difference approximation, denote by [, = 27, [, = 2, and [, = 1 the
lengths of TU elements along the coordinates ¢, z, and y and choose the grid with the

coordinates (i, Zj, Uk, tn) of the nodes, where

o, =0—-1A, i=12,.N, A, =1,/(N-1)),

=1+ -DA, (j=12..M A, =1/(M—1));
Go=(k— DA, (k=1,2...K, Ay =1,/(K — 1));

tn = TI/At

(n=0,1,2,...).
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The step and the number of mesh elements depend on the direction: (N + 1) = 96,
(M + 1) = 25, and K = 20. At each time step we introduce arrays with elements. The
one-dimensional arrays are

(Y (OB L oop\ _(or\  (op) _(op
7\ 0y . \ot i7pi_pi7j:197 dp i_ dp i,j:lQ, 0z i_ 0z i7j2197

(K3);, (Ka);s (Ke)y, (K7)y,, (Ko),, (Kuo)y,, (Q1); = (Ql)i,jzwa (Q2); = (QQ)i,j:w'

The two-dimensional arrays are

ik = Hij=19k; (Vfﬁ)zk - (Vx>i,j:19,k ’ (V )z k (V )z] 19,k

(3], (3),.. (5], (),
0@ i,k ag 1,j=19,k ’ 0@ ik 8@ i =19k ’ uz,k M'ijzlgyk’

(qﬂ?y)zk (qﬂcy>z] 19,k 7 (sz)zk (qu)U 19,k 7 (Ds)i (Ds)” 19,k (D)zk = (D)i,jzlg,k'

To construct the difference analogs of (14), we apply the Pismen—Reckford method
[9-12] with a two-step difference scheme. Let us discretize (14), using for all derivatives
the simplest central differences

or Tz+1—Tzl 82T_Ti+1 2T+Tzl
890 20, T 0¢? N A2

Firstly, consider the discretization scheme of the heat equation (8) for the bushing.
Divide the time step into two half-steps (Figure 2):

Step 1 (by ¢)
T =Ty,
A7/2
Step 2 (by y)

- n+1/2
Tvinlj-l o Tn+ /

= K5 - Lyy(T)?,k + Ko, - Ly<T)?,k + Ko - L¢¢(T)?:lt1/2'

At_/;k = Ks- Lyy<T)§T + Ko Ly(T)n+1 + Krg- LW(T)Z?/Z,
Fn—+1/2 n i
TP =T T — 200 + Th
= K5
Az/2 A2 (15)
™n ™n n+1/2 Fn—+1/2 n+1/2
K T — T LK Tz+1k/ _2T /‘l'T /
Gk—QAy Tk A?o :
Tyt - T T 2T+ T
= K5
Ag/2 . A2 (16)
g T TED Tl - 2T”+1/ ays
6k—2Ay Th A?& .
Express (15), (16) as
alTn-‘rl/Q T by Tn+1/2 i 1Tnﬂlk/z . le{fka n elj—ﬂ;?k 4 f17_}’fk+1, (17)
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Fig. 2. Scheme of calculation by the implicit method of alternating directions. Arrows indicate

the directions the scheme is implicit in

T + b T + oIl = BT + T + AT, (18)
where
Ky, 1 Ky Ky, Ks K 1 Ks
M TR T (AtJFA?)’Cl Az (mg QA) ( A Ag)’
Ks  Kgp Ks  Kgyi 1 Ks K5 Keg Koy,
fl A§+2Ay7a2 A§+2Ay7 (At+A2>? C2 AQ 2Ay7 2 Aaa
1 K7k K?k

Similarly discretize the energy equatlon (5) Divide the time step into two halves:
Step 1 (by )

Fn+1/2 Fn
Toe =Tk e Ly KT LTV KL " L K
At_/2 31 yy( )z,k+ 2 i,k y( )z,k:+ 114,k 80( ) + Ry
Step 2 (by y)
Tn+1 _ Tn+1/2
P — K Ly K LT+ K LD 4 K
t
or
Fn+1/2 ™n N, N, N, N ™
T =T T =20+ Ty Thon =Ty
24,k oA

A7 /2 3 A2 2A
t/ Tn+1/2y_ Tn+1/2 Y (19)

+K1”€ i+1,k A i—1,k + K4Z‘,

©
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Tt T T Tt Tnt T - T
A2 A? M Y N
Fnt+1/2 Tn+1/2 (20)
—|—K1 B i+1,k 1,k +K4z
27,

Express (19, 20) as

3T7’L+1/2 + b Tn+1/2 + 3T7}:11k{2 - d3T e + 63 7k + fgiz_—;??k_i_l + 937 (21)
ATl + 0T + Tt = AT + a0+ AT + 0 (22)
where
KTk b 2 d Ksi K3y 5 1 Ks;
Aq = = — ., C2 = —Q = — — €Cq = _—
3 2Aw b 3 A{’ 3 37 3 A?] 2Ay b 3 At’ Az )
fs= +—= 93 = Ky, a4 = — by =2 + , Cp = — —
AZ DA, A2 2Ay A A2 A2 2A)
Kl k K? k
d = 1’ = L — K e
4 QA 7 f4 2A4p y 94 4

The discretization of the heat equation (10) for the pin follows the same pattern.
Step 1 (by )
—n—+1/2 n,
T = To
Az/2
Step 2 (by y)
n n+1/2
Tt -1

A7/2

= Kg - Ly (1)} + Ko - Ly(T)"% + Ko - LW(T)ZZI/Q.

= K- Ly (1)1 + Kok - Ly(T)5E" + Kuon - Lo (T)1512,

Fn+1/2 n ™n mn
TP =T Tl = 2T+ Ty
A;/2 i A2

Tn+1/2 . 2Tn+1/2 4 Tn+1/2

ﬂnk+1 - Tink—l i+1,k
+Kop———F7—— + Kok 2 )
24\, Aw

41 F=n+1/2 Fn+1 n+1 n+1
7 — Ty T — 210 + 10

=K
Az/2 s A2
n n n+1/2 Fn+1/2 An+1/2
LT TP — o Y

ikl ~ ik i+1,k
+Rop———r—— + Kok A2
Y ®

2A

Express the latter equations as

+

as T2+ 05T 4 e TP = ds Ty + T + 5T, (23)

as T} + b Ty + e T = dﬁTnH/Q +e Tn+1/2 + fo 173:1/27 (24)
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where
Ko ( 1 KlOk) Kok (Ks ng)
as = ——— by =2 — + L= ds = [ — — —— |,
Ad Ap - AZ A2 2A2  2A
1 Ky Ky Ko Ky Koy, 1 Kg
o) B B o Bs ) Bok g
e ( A, A;)’J% Az oA, T TAz oA, (AtJFA?)
c :—ﬁ—@ :@ en — 9 1 +K10k fy= K1ok
0 A2 27, 0T AZT T T AT A2 6 '

Write down the groups of equations (17) and (18), (21) and (22), (23) and (24) at all
internal nodes of the grid for all ¢ > 0. This splitting reduces the problem to systems of
algebraic equations with tridiagonal matrices. At step 1 we solve the system for each row
(the series of points with fixed k) and at step 2 we solve the system for each column (the
series of points with fixed 7).

We begin by integrating the energy equation with the boundary conditions reflecting
the frequency of temperature change in the circumferential direction and the equality of
temperatures on the surfaces of the lubricating layer shared with the journal (the Dirichlet
conditions). Their difference analogs are

T'infl,k = 7iT,Lk7 Tn—glkﬂ _ Tn+1/2 Tn—ﬁlk - Tn+17 Tn Tl(;ITC)7 T N T(T TF)

)

Applying the sweep method first in the circumferential direction, we write the recurrence

=n+1/2 n+1/
Tz’+1,k §z+1u ik + Mit1,k-

Using the formulas of the left sweep, find the coefficients &;11 and 1,41 for all 2 and &, then
perform the sweep in the radial direction.

The experience of many researchers has shown that implicit schemes of the method of
alternating directions allow for big time intervals and speed up calculations in general.
Douglas [10] successfully implemented a three-step scheme to integrate this kind of
equation and showed that the scheme of the second order of accuracy O(AF, A2, A2 AZ)
is certainly stable.

3. The Results

The first results concern the dynamics of the connecting rod bearing of an internal
combustion engine of type 13/15.

During the calculation, at each point in time we obtain the three-dimensional
distribution of temperature in the lubricant. The distribution of temperature along the ¥
coordinate is shown in Figure 3, where for each element of the system "journal — lubricating
layer — bushing" we chose 20 mesh elements.

The solution rests on a finite difference approximation. We neglected journal tilting.
Solving the equation for hydrodynamic pressure, we allow the viscosity of the lubricant to
depend on the second invariant of the shear rate and the resulting temperature distribution.
Calculations show that the maximal temperature of the lubricating layer is found in the
region of the largest hydrodynamic pressures.
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Fig. 3. The distribution of temperature along the y coordinate

The results show that the heat exchange processes between the lubricating layer and
the swrrounding surfaces with convective heat transfer in the radial direction (see Fig. 3)
reduce the mean temperature of the lubricant by 5 to 7 degrees. These results agree with
the data of [13,14].

Conclusions

(1) We presented a model and an algorithm for calculating the thermal hydrodynamic
characteristics of heavily loaded bearings. They enable us to account for the processes of
heat exchange between the lubricating layer with the properties of a non-Newtonian liquid
and the elements of tribo-units.

(2) We proposed a solution algorithm based on a two-step difference approximation and
an implicit scheme of the method of alternating directions, using which we can significantly
increase the time intervals and decrease the running time of the calculation.

(3) The results show that in the design of heavily loaded tribo-units the models and
algorithms we developed enable us to account for the rheological properties of the lubricant,
the temperature distribution in the lubricating layer, and the thermal state of tribo-units
as a whole.
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MOJEJINMPOBAHUWE N OIIEHKA TEIIJIOBOI'O
COCTOAHNA CJIOZKHOHATPY XKEHHDBIX
TPUBOCOIIPIAYXKEHU

IO.B. Poostcdecmsenckuti, E.A. 3adopootcrasn

TennoBoe COCTOsIHUE 3JIEMEHTOB CIOKHOHATPYKEHHBIX TPUOOCOMPSIKEHUN SBJISIETCS
OIHUM U3 HanboJiee 3HAUNMBIX TapaMeTpPOB, BIAUSIONINX HA HX paboToCIocobHOCTh. Teme-
paTypa CMa309HOIO CJIOS TOIIUITHUKOB CKOIhYKEHS BO MHOTOM OIPEJIEISIeT €ro HECYIyio
crmocobHOCTh. Mcnonmb30oBanne ypaBHEHNS TEILIOBOIO OATAHCA JIsT OIEHKH TEeMIIEPATYPhI
TpUbOCONPsKEHNH He MO3BOJISET HANTH OIS TEMIIEPATYP W 30HBI HX MAKCAMAJIbHBIX 3HA-
YeHUH. DTUM OTIPEIEISIeTCs AKTYATBHOCTE 387a49i. B ¢TaThe pacCMOTpeHA MaTEMATHIECKAS
MOJIEJTb ¥ METOIUKA PACIETa, TEIJIOBOr0 COCTOSHUS W TEPMOTUIDOINHAMAIECKUX XapaKTe-
PUCTHK CJI0KHOHAIPYKEHHBIX OIOP CKOJIbXKeHust. [[pr 3TOM yUInTHIBAIOTCS HEHBIOTOHOBCKHE
CBOWCTBA KUJKOCTH, TPOIECCHI TEIIO0OMEHA MEXKIY CMA30YHBIM CIOEM M OKDPYIKAIOIIUMA
€ro TONBUKHBIMHU MTOBEPXHOCTAMU TPUOOCONpsKkeHus. s pemenns ypaBHEHUS SHEPIHH
MPEJJIOAKEHO KCIIOJIB30BATH KOHEYHO-PA3HOCTHBIE annpokcuMaruu. [Ipu mocrpoenun pas-
HOCTHBIX AHAJIOTOB YPABHEHUI SHEPTUU IJI OTAENBHBIX JIEMEHTOB KOHCTPYKITUU W TOHKO-
0 CMa30YHOTO CJI0s OBLT TPUMEHEH HesiBHBIM MeTO[ epeMeHHbIX Hampasienuii [lucmena-
Pekdopaa. [IpuBenensr pe3yibraThl pacdeTa THAPOMEXAHUIECKUX XAPAKTEPUCTUK MIATYH-
HOTO TIO/IIIUITHUKA TEILTIOBOTO ABuraTessa. B mporiecce pacdera ObLIH MOy 9€HbI TPEXMEPHBIE
pacipeeseHis TeMIEPATyPbl B CMa309HOM MaTepHaJe.

Pezynbrarsr nokazanu, 9TO TPU yUYeTe KOHBEKTHBHOrO TEPEHOCA, TEIIa B PAJAUATIb-
HOM HAINPABJIEHUHU, MPOIECCHl TETLIOOOMEHA MEXKY CMA30YHBIM CJI0EM U OKDPYZKAIOIIAMEI
€r0 TIOJBUXKHBIMU TIOBEPXHOCTSIMU JAI0T BO3MOXKHOCTE 00JIee TOUHO OIPENE/IUTh CPETHENH-
TErpajibHyI0 TEMIIEPATYPY CMA309YHOrO MATEPHUATA U TEIIOHANPS)KEHHOCTh COTPSIKEHUS B
mnesioM. Pa3paborantas MeTOINKA MOKET OBITh MCIIOJIb30BAHA IIPH OIEHKE XapPaKTEPHCTUK
7 paboTOCTTOCOOHOCTH CJIOYKHOHATPYKEHHBIX TPUOOCONPSIKEHNST TTOPIITHEBBIX U POTOPHBIX
MAaIlWH PA3JIUYIHOTO HAZHAIEHUS.

Karoneswie caosa: onopa otcudkocmmozo mpenus; 0000ulenHoe YpasHeHue IHep2ul;

YpasHEHUA C YACITHDIMUY npouseodmnmu; Kpaesvle 3a0amu.
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