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The notion of mean derivatives was introduced by E. Nelson in 60-th years of XX
century and at the moment there are a lot of mathematical models of physical processes
constructed in terms of those derivatives. The paper is devoted to investigation of stochastic
differential equations with current velocities, i.e., with Nelson’s symmetric mean derivatives.
Since the current velocities of stochastic processes are natural analogues of ordinary physical
velocities of deterministic processes, such a research is important for investigation of models
of physical processes that take into account stochastic properties. An existence of solution
theorem for those equations is obtained.
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Introduction. The notion of mean derivatives was introduced by E. Nelson [1-3] for the
needs of the so-called Nelson’s stochastic mechanics (a version of quantum mechanics).
Later a lot of applications of mean derivatives to some other branches of science were
found. It should be pointed out that among Nelson’s mean derivatives (forward, backward,
symmetric and antisymmetric, etc.) the symmetric derivatives called current velocities,
play the role of natural analogue of physical velocity of deterministic processes. That is
why inestigation of equations with with current velocities is very important for stochastic
models for many physical processes.

In this paper we investigate those equations and obtain an existence and uniqueness
theorem for their solutions.

Some remarks on notations. In this paper we deal with equations and inclusions in
the linear space R", for which we always use coordinate presentation of vectors and linear
operators. Vectors in R"™ are considered as columns. If X is such a vector, the transposed
row vector is denoted by X*. Linear operators from R" to R™ are represented as n X n
matrices, the symbol % means transposition of a matrix (pass to the matrix of conjugate
operator). The space of n x n matrices is denoted by L(R", R").

By S(n) we denote the linear space of symmetric n X n matrices that is a subspace in
L(R™ R™). The symbol S (n) denotes the set of positive definite symmetric n X n matrices
that is a convex open set in S(n). Its closure, i.e., the set of positive semi-definite symmetric
n X n matrices, is denoted by S, (n).

Everywhere below for a set B in R” or in L(R™, R™) the notation ||B|| means sup ||y||-
yeEB
For the sake of simplicity we consider equations, their solutions and other objects on

a finite time interval ¢t € [0, 7).
We use Einstein’s summation convention with respect to shared upper and lower
indices.
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1. Preliminaries on the Mean Derivatives. Consider a stochastic process £(t) in R",
t € [0,1], given on a certain probability space (€2, F,P) and such that £(t) is Li-random
variable for all ¢.

Every stochastic process (t) in R™, t € [0, (], determines three families of o-subalgebras
of o-algebra F:

(i) the "past" PS generated by pre-images of Borel sets in R” by all mappings £(s) :
Q—=R"for 0 <s <t

(ii) the "future" ]-"f generated by pre-images of Borel sets in R™ by all mappings
() Q=R fort <s<lI;

(i) the "present" ("now") N} generated by pre-images of Borel sets in R™ by the
mapping & ().

All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of £(¢) with respect to /\/’f by
ES ().

Ordinary ("unconditional") expectation is denoted by E.

Strictly speaking, almost surely (a.s.) the sample paths of (¢) are not differentiable for
almost all . Thus its "classical" derivatives exist only in the sense of generalized functions.
To avoid using the generalized functions, following Nelson (see, e.g., [1-3]) we give

Definition 1. (i) Forward mean derivative DE(t) of £(t) at time t is an Ly-random variable
of the form

2 (1)

where the limit is supposed to exists in Li(Q, F,P) and At — +0 means that At tends to
0 and At > 0.
(11) Backward mean derivative D,E(t) of £(t) at t is an Ly-random variable

D.e() = tm pfU=ELZ 2 )

At—+0

where the conditions and the notation are the same as in (i).

Note that mainly DE(t) # D.&(t), but if, say, £(t) a.s. has smooth sample paths, these
derivatives evidently coinside.

From the properties of conditional expectation (see [5] ) it follows that DE(t) and
D.£(t) can be represented as compositions of £(t) and Borel measurable vector fields

(regressions)
Vo(ta) = tim BT EOZE e
Vo) = tim B ZEEZ80 ) 3)

on R”. This means that DE(t) = YO(t,£(t)) and D,E(t) = Y2(t,£(1)).

Definition 2. The derivative Dg = %(D + D.) is called symmetric mean derivative. The
derivative Dy = %(D — D) is called anti-symmetric mean derivative .

Consider the vector fields v*(¢,z) = $(YO(t,z) + Y2(¢,z)) and ué(t,z) = L(YO(t,z) —
Y2(t, ).
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Definition 3. v¢(t) = v*(t,£(t)) = Dsé(t) is called current velocity of £(t);
us(t) = ub(t, &(t)) = DAE(t) is called osmotic velocity of £(t).

For stochastic processes the current velocity is a direct analogue of ordinary physical
velocity of deterministic processes (see, e.g., [1-3,8]). The osmotic velocity measures how
fast the "randomness" grows up.

Recall that Ito process is a process £(t) of the form

t t

E(t) =& +/a(s)ds+/A(s)dw(s),
0 0
where a(t) is a process in R™ whose sample paths a.s. have bounded variation; A(t) is
a process in L(R™,R") such that for any element A’(t) of matrix A(t) the condition
P(w| fOT(Ag)th < 00) = 1 holds; w(t) is a Wiener process in R”; the first integral is the
Lebesgue integral, the second one is It6 integral and all integrals are well-posed.

Definition 4. An It process £(t) is called a process of diffusion type if a(t) and A(t)
are not anticipating with respect to Pf and the Wiener process w(t) is adapted to Pf.
If a(t) = a(t,&(t) and A(t) = A(t,&(t)), where a(t,x) and A(t,z) are Borel measurable
mappings from [0,T] x R™ to R™ and to L(R™, R™), respectively, the It process is called a
diffusion process.

In the latter case with Borel measurable a(t,z) and A(t,x) process £(t) is supposed
to be a weak solution of the above equation.

Below we are dealing with smooth fields of non-degenerate linear operators A(zx) :
R* — R" z € R" (i.e., (1,1)-tensor field on R™). Let £(¢t) be a diffusion process in
which the integrand under It6 integral is of the form A(£(t)). Then its diffusion coefficient
A(z)A*(x) is a smooth field of symmetric positive definite matrices a(z) = (a¥(z)) ((2,0)-
tensor field on R™). Since all these matrices are non-degenerate and smooth, there exist
the smooth field of converse symmetric and positive definite matrices (a;;). Hence this
field can be used as a new Riemannian «a(-,-) = a;;dz’ ® dz? on R"™. The volume form of
this metric is A, = /det(;;)da' Adz? A -+ A dz™

Denote by p*(¢,x) the probability density of random element £(¢) with respect to the
volume form dt A A, = \/det(ay;)dt Adax' Ada* A--- Ada™ on [0,T] x R, i.e., for every
continuous bounded function f : [0,7] x R" — R the relation

T T

7ﬂﬂmwmﬁ=/ [ty |ae= [ | [ oo, |

0
holds.

Lemma 1. [9,10] Let &(t) satisfy the Ito equation

t t
) =0+ [als.g(e)ds + [ Al g)duls)
0 0
Then & (i
’ 2 pi(t,x) Oz
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where (') is the matriz of operator AA* under the assumption that p*(t,z) is smooth and
nowhere equal to zero.

Remark 1. Denote by Z(z) the vector field whose coordinate presentation is a 7 M%. One
can easily derive from (4) that u*(t,z) = $Gradlog p*(t, z) + $=(x) where Grad denotes

ol p (1 20t
the gradient with respect to metric a(-, -). Indeed, %;f; = %a”%% 4182 D
where a”%azi = Gradlog p* and %‘;7 57 — =
Lemma 2. [3,8| For v5(t,z) and p*(t,x) the following interrelation
Op(t, ) :
- —Div(v*(t,x)p*(t, 7)), (5)

(known as the equation of continuity) takes place where Div denotes the divergence with
respect to Riemannian metric a(-,-).

Following |7, 8] we introduce the differential operator Dy that differentiates an L,
random process £(t), t € [0, T] according to the rule

t+ At) —&(t t+ At) —&(t))*
D) = g (S A0 €N+ 20 €00 o
where ({(t+ At) —£(t)) is considered as a column vector (vector in R™), (£(t+ At) —&(t))*
is a row vector (transposed, or conjugate vector) and the limit is supposed to exists in
L1(2, F,P). We emphasize that the matrix product of a column on the left and a row on
the right is a matrix so that Dy&(t) is a symmetric positive semi-definite matrix function
on [0,7] x R™. We call D, the quadratic mean derivative.

Theorem 1. [7,8] For an Ité diffusion type process {(t) the forward mean derivative DE(t)
exists and equals E*(a(t)). In particular, if £(t) a diffusion process, DE(t) = a(t, £(t)).

Theorem 2. [7,8] Let &(t) be a diffusion type process. Then Do£(t) = Ef[a(t)] where
a(t) = AA*. In particular, if £(t) is a diffusion process, D2&(t) = a(t,&(t)) where o = AA*
is the diffusion coefficient.

Lemma 3. [7,8| Let a(t,x) be a jointly continuous (measurable, smooth) mapping
from [0, T] x R™ to Si(n). Then there exists a jointly continuous (measurable, smooth,
respectively) mapping A(t, x) from [0, T] x R™ to L(R™,R™) such that for allt € R, x € R™
the equality A(t,x)A*(t,x) = a(t,z) holds.

2. Main Results. As it is mentioned in Section 1, the meaning of current velocities is
analogous to that of ordinary velocity for a non-random process. Thus the case of equations
with current velocities is probably the most natural from the physical point of view.

The system of the form

{ Dsé(t) = v(t, &(1)) (7)
Dot(t) = a(t, (1))

is called a first order differential equation with current velocities.
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Definition 5. We say that (7) has a solution on the interval [0,T] if there exists a
probability space (2, F,P) and a process &(t) given on (2, F,P) for t € [0,T], that
satisfies (7).

Theorem 3. Let v : [0,7] x R" — R™ be smooth and o : R* — Si(n) be smooth
and autonomous (so, it determines the Riemannian metric a(-,-) on R™, introduced in
Section 1). Let them also satisfy the estimates

[o(t )| < K1+ [l), (8)

tr a(z) < K(1+ ||z|*) 9)
and for all indices ij let the elements of matriz a(x) satisfy the inequality

oot

| oxd
for some K > 0. Let & be a random element with values in R™ whose probability density po
with respect to the volume form A, of a(-,-) on R™ (see Section 1), is smooth and nowhere
equal to zero. Then for the initial condition £(0) = &y equation (7) has a solution that is
well posed on the entire interval t € [0,T] and unique as a diffusion process.

(@) < K (1 + [l]) (10)

Proof. Since v(t, x) is smooth and estimate (8) is fulfilled, its flow g; is well posed on the
entire interval ¢ € [0,7]. By g:(z) we denote the orbit of the flow (i.e., the solution of
equation 2'(t) = v(t,)) with the initial condition go(z) = x. Since v(t,z) is smooth, its
flow is also smooth.

Continuity equation (5) obviously can be transformed into the form

dp

5 =
Suppose that p(t,z) nowhere in [0,7] x R"™ equals zero. Then we can divide (11) by p so
that it is transformed into the equation

—a(v,Grad p) — p Div v. (11)

op

ot
where p = log p. Introduce py = log po. Show that the solution of (12) with initial condition
p(0) = po is described by the formula p(t,z) = po(g_i(x)) — fOt(Div v) (8, gs(g_¢(x)) ds.
Introduce the product [0,7] x R™ and consider the function py as given on the level
surface (0,R™). Consider the vector field (1,v(¢,z)) on [0,7] x R"™ The orbits of its
flow §;, starting at the points of (0,R"), have the form ¢(0,2) = (¢,¢/(z)) and the
flow is smooth as well as ¢;. Also introduce on [0,7] x R™ the Riemannian metric
a(+,-) by the formula &((X1,Y1),(X2,Y2)) = X1Xo + a(Y1,Ys). Notice that for any
(t,z) the point §g_.(t,x) belongs to (0,R™) where the function py is given. Thus on the
one hand (1,v)p(t,x), the derivative of p(f,x) in the direction of (1,v), by construction
equals —Div v(t,z). And on the other hand one can easily calculate that (1,v)p(t,x) =
2p(t,z) + a(v(t,z),Grad p(t,z)). Thus (12) is satisfied.

Notice that p = e is indeed nowhere zero and so our arguments are well-posed.
From the construction it follows that for a given field o and initial density py satisfying
the hypothesis, the densities of constructed type and the smooth vector fields having
compete flows, are in one-to-one correspondence. Thus after finding the density p(¢, z)

—a(v,Grad p) — Div v (12)
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for the solution of (7), we can find also the osmotic velocity ué(¢,z) by formula (4),
ie, u = %Gmd D+ %E = Gradlog/p + %E Note that u is uniquely determined by p
and o and so the forward mean derivative of the solution is also uniquely determined
by the formula a(t,z) = v(t,z) + %Gmd P+ %E = Gradlog\/p + %E From Lemma 3
and from the hypothesis of Theorem it follows that there exists smooth A(z) such that
A(x)A*(z) = a(x) and the relation ||A(t,x)|| < K(1 + ||z||) holds. Then from the general
theory of equations with forward mean derivatives it follows that £(¢) having the density
p(t, z) as above must satisfy the stochastic differential equation

t t

) =0+ [als.gls)ds + [ Al g()duls) (13
0 0
From the hypothesis and from results of [4] it follows that (13) has has a unique strong
solution £(t) with initial density po well-posed for ¢ € [0, T]. Thus, by Theorem 2 Dy&(t) =
a(&(t)). The fact that Ds&(t) = v(t,£(t)) follows from the construction.
([
Lemma 4. Let a(x), p(t,z) and A, be the same as in Theorem 3. Let also the vector field
v from Theorem 8 be autonomous. Then the flow §; of vector field (1,v(x)) on [0,T] x R"
preserves the volume form p(t,x)dt N A, (i.e., g (p(t,x)dt AN A,) = po(x)dt A A, where §;
is the pull back) and so for any measurable set Q C R™ and for any t € [0,T]

/ po() A = / ot 2)A,.

Q gt(Q)

Proof. Tt is enough to show that L .)(p(t, 2)dt AAy) = 0 where L, is the Lie derivative
along (1,v). Obviously

L(l’v)(p(t, I)dt A Aa) = (L(Lv)p(t, l’))dt N Aa + p(t, x) (L(l’v)dt A Aa).

For a function the Lie derivative coincides with the derivative in direction of vector field,
hence L1 ,)p(t, ) = %jta(v, Grad p) (see the proof of Theorem 3) and so (L, p(t, ))dtA
Ay = (2 +a(v, Grad p))dt AA,. Since neither the form A, nor the vector filed v(z) depend
on t, L yydt NNy = dt A (LyAy) = Dive ( dt A A,) as the Lie derivative along v of the
volume form A, equals (Divv)A, (see, e.g., [6]). Taking into account (11), we obtain
L) (p(t, z)dt N A,) = 0. O
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O CYIIIECTBOBAHNIU PEIIEHNN CTOXACTNYECKIIX
ANOOEPEHITNAJIBHBIX YPABHEHUN C TEKYIIIIMN
CKOPOCTAMU

C.B. Aszapuna, FO.E. I'nuxkaux

[TonsaTust TpOU3BOHBIX B cpeareM ObLin BBemenb! 9. Hembconom B 60-x rogax XX Beka,
¥ B HACTOSIIHI MOMEHT MMEETCsT MHOTO MAaTEeMATHIECKAX MOIenel pUu3nIecKux mpoIeccos,
[IOCTPOEHHBIX B TEPMHHAX 3THX POU3BOAHBIX. CTaThsl IOCBAIIEHA UCCJIEIOBAHAIO CTOXACTH-
qeckuX AudPEePeHITHANTbHBIX YPABHEHU C TEKYIIUMU CKOPOCTIMH, T.€., C HEJTbCOHOBCKUMHI
CUMMETPUIECKUMU TTPOU3BOIHBIMU B cpemHeM. I[ToCKOMbKY TeKyIue CKOPOCTH CITyYaiiHbIX
MIPOIIECCOB SIBJISIOTCA €CTeCTBEHHBIMY AHAJOTAMHI OOBIYHBIX (PU3HYECKUX CKOPOCTEH merep-
MUHUPOBAHHBIX TTPOTECCOB, N3yUeHNE TAKUX YPABHEHUM BayKHO JJId UCCIETOBAHUI Moaeeit
(PHU3UIECKUX MPOIECCOB, KOTOPBIE YUNTHIBAIOT CTOXAaCTUIeCKne cBoiicTa. Ilomyuena Teope-
Ma, CYIIECTBOBAHUS PEIEHN JJIsT YKA3aHHOTO THUIIA, YPABHEHHIA.

Karoueswie crosa: TlpOUSGO(?HbLe [¢] Cpe(?H@M,’ YypasHeHUuA C MERYUWUMU CKOPOCTNAMU, CY-
wecmeosarue u e0UHCTMGENHOCTY pewenuﬂ.
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