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The structure of stationary states of the one-dimensional Cahn � Hilliard equation

coupled with the Neumann boundary conditions has been studied. Here the free energy is

given by a fourth order polynomial. The bifurcation diagram for existence and uniqueness

of monotone solutions for this problem has been constructed. Namely, we �nd the length

of the interval on which the solution monotonically increases or decreases and has one zero

for some �xed values of physical parameters. Under the non-uniqueness we understand a

possibility of existence of more than one monotone solutions for the same values of physical

parameters.
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Introduction

We study the steady state solutions for the Cahn � Hilliard equation (see e.g. [2,4,7,8])

ut = (−αu+ γu3 − uxx)xx, 0 < x < l, t > 0, (1)

coupled with the Neumann boundary conditions

ux = uxxx = 0, x = 0, l, (2)

where α and γ are some physical parameters. The authors of [2] have considered a
structure of stationary solutions of problem (1) � (2) as a function of length l and mass

m =
∫ l

0
u(s)ds. They have counted the total number of monotone solutions, depending

on the parameter values of the problem. In [2] phase portraits of the problem have been
constructed which describe the monotone solutions for a special stored-energy function
f(u) + ε2

2
(u′)2, where ε is a small parameter. In this case, the function f ′(u) has one

negative minimum, one positive maximum, and f(±∞) = ±∞.
In this paper, we study the following problem

u′′ = −αu+ γu3 − σ, u′(0) = u′(l) = 0, (3)

where σ re�ects in�uence of the average mass on qualitative behaviour of solutions; α is the
main parameter of the problem because it is related to an interaction energy of the phase
decomposition in a binary alloy; γ is a parameter corresponding to thermodynamically
stability of the system. In particular, α = Eint

kBT
(1− T

Tc
), where Tc is the critical temperature
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of the phase transition for order-disorder in a disordered binary alloy, which can be
measured during the cooling process of the alloy; Eint is the interaction energy between
atoms of sorts A and B in the binary alloy. The energy functional corresponding to problem
(3) can be written in the form

E(u(t)) =

l∫
0

(
1

2
(u′)2 + f(u)

)
dx, E(u(t)) = E(u(0)),

where the free energy f(u) is

f(u) =
γ

4
u4 − α

2
u2 − σu+ C.

Note that, in the case α > 0, γ > 0, by the re-scaling u =
√

α
γ
û(
√
αx), problem (3) can

be reduced to

û′′ = −û+ û3 − σ̂, û′(0) = û′(L) = 0, (4)

where L =
√
α l and σ̂ = σ

α

√
γ
α
. This case was studied in [2, 7]. To the best of authors'

knowledge all other cases were not considered in a literature. Therefore, in this article we
investigate the existence of nontrivial solutions of problem (3) for all possible values of
these parameters. In particular, we study an interesting case when γ < 0. It should be

mentioned that the case γ < 0, α < 0 and |σ| < σ0 :=
√

4α3

27γ
leads to a non-uniqueness

result (i. e. there exist two solutions with the same initial energy), depending on initial
energy, but the solution of the problem is unique when |σ| → σ0. Also we describe all
possible dynamical scenarios for the parameter values.

Moreover, our results can be applied to the Izing model. For example, the Izing model
free energy in the vicinity of the phase transition may be written as the following (see,
e. g. [6])

f(u) = a+ r u2 + s u4 +O(u6). (5)

In order for the system to be thermodynamically stable, the parameter on the highest even
power of the order parameter must be positive. In this case, we show that s > 0, hence
the free energy is bounded. However, for the Neumann boundary value problem we can
consider the case when the "open" system is thermodynamically unstable that corresponds
to s < 0. For example, in the case s < 0, r > 0 and a ∈ [0, r

2
), a solution is not unique. On

the phase plane uOu′, this phenomenon is illustrated by two loops with identical lengths
of periods which are both symmetric with respect to the axis Ou. Thus, there are two
smooth nontrivial solutions.

1. The Steady State Solutions for the Cahn � Hilliard Equation

In this section, we �nd the existence interval, L for a monotone solution by considering
all possible values of the physical parameters. We proceed by examining all qualitatively
di�erent nine cases. Note that since all systems at hands are conservative they cannot have
any attracting �xed points. Therefore their phase portraits can have only saddles and/or
centers.
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Fig 1. Phase diagram for the case α > 0, γ > 0 with σ = 0, 1 on the left and σ = 1 on
the right

1.1. Case α > 0, γ > 0

In this case, by the re-scaling u =
√

α
γ
û(
√
αx), problem (3) can be reduced to

û′′ = −û+ û3 − σ̂, û′(0) = û′(L) = 0, (6)

where L =
√
α l and σ̂ = σ

α

√
γ
α
. Integrating (6), we �nd that

(û′)2

2
− û4

4
+

û2

2
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(û4 − 2û2 − 4σ̂û+ 4p).

Note that the equation û3 − û− σ̂ = 0 has
• three real roots

ûk = − 2√
3
cos(ϕ+

2kπ

3
), k = 0, 1, 2, ϕ =

1

3
arccos(

3
√
3σ̂

2
);

provided that σ̂2 < 4
27

(two minimums and one maximum). Thus, we have two nontrivial

solutions if − û4
max

4
+ û2

max

2
+ σ̂ûmax ≤ p < − û4

min

4
+

û2
min

2
+ σ̂ûmin and the lengths of intervals,

where the corresponding solution has only one zero, are

L0,1 =
√
2

u2∫
u1

dt√
t4 − 2t2 − 4σ̂t+ 4p

, L0,2 =
√
2

u4∫
u3

dt√
t4 − 2t2 − 4σ̂t+ 4p

(7)

where uk are four real roots of the equation t4 − 2t2 − 4σ̂t + 4p = 0 such that u1 < u2 ≤
u3 < u4. We have only one nontrivial solution if p < − û4

max

4
+ û2

max

2
+ σ̂ûmax with the length

of interval, where the solution has only one zero, given by

L0,3 =
√
2

u2∫
u1

dt√
t4 − 2t2 − 4σ̂t+ 4p

, (8)
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Fig 2. Phase diagram for the case α > 0, γ < 0 with σ = 0, 1 on the left and σ = 1 on
the right

where uk are two real roots of the equation t4 − 2t2 − 4σ̂t+ 4p = 0 such that u1 < u2;
• one real root

ûmin =
( σ̂
2
+

√
σ̂2

4
− 1

27

)1/3
+
( σ̂
2
−
√

σ̂2

4
− 1

27

)1/3
provided that σ̂2 > 4

27
(one minimum). Thus, we have a nontrivial solution if p < − û4

min

4
+

û2
min

2
+ σ̂ûmin with the length of interval, where the solution has only one zero, given by

L0 =
√
2

u2∫
u1

dt√
t4 − 2t2 − 4σ̂t+ 4p

, (9)

where uk are two real roots of the equation t4 − 2t2 − 4σ̂t+ 4p = 0 such that u1 < u2;
• two real roots

ûmin = 2(
σ̂

2
)1/3, ûfl = −(

σ̂

2
)1/3

provided that σ̂2 = 4
27
(one minimum). Thus, we have a nontrivial solution if p < − û4

min

4
+

û2
min

2
+ σ̂ûmin = 2( σ̂

2
)2/3 with the length of interval, where the solution has only one zero,

given by

L0 =
√
2

u2∫
u1

dt√
t4 − 2t2 − 4σ̂t+ 4p

, (10)

where uk are the two real roots of the equation t4 − 2t2 + 4σ̂t− 4p = 0 such that u1 < u2.
Thus, if 0 < L < L0 then the corresponding solution of the problem has no zeros

located on the interval (0, L). If kL0 ≤ L < (k+1)L0, where k = 1, 2, ..., then the solution
has exactly k zeros located on the interval (0, L).

1.2. Case α > 0, γ < 0

In this case, by the re-scaling u =
√
−α

γ
û(
√
αx), problem (3) can be reduced to

û′′ = −û− û3 − σ̂, û′(0) = û′(L) = 0, (11)

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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where L =
√
α l and σ̂ = σ

α

√
− γ

α
. Integrating (11), we obtain

(û′)2

2
+

û4

4
+

û2

2
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(−û4 − 2û2 − 4σ̂û+ 4p).

Note that the equation û3 + û+ σ̂ = 0 has only one real root

ûmax =
(
− σ̂

2
+

√
σ̂2

4
+

1

27

)1/3
+
(
− σ̂

2
−
√

σ̂2

4
+

1

27

)1/3
for any σ̂ ∈ R1 (one maximum). Thus, we have a nontrivial solution if p > û4

max

4
+ û2

max

2
+

σ̂ûmax with the length of interval, where the solution has only one zero, given by

L0 =
√
2

u2∫
u1

dt√
−t4 − 2t2 − 4σ̂t+ 4p

, (12)

where uk are two real roots of the equation t4 + 2t2 + 4σ̂t− 4p = 0 such that u1 < u2. For
example, if σ̂ = 0 and p > 0 then we have

(u′)2

A2
+

(u2 + 1)2

B4
= 1, (13)

where A2 = 4p+1
2
, B4 = 4p+ 1, and from (13) it follows that

L0 =
B2

A

√
B2−1∫

−
√
B2−1

dt√
B4 − (t2 + 1)2

= Ã

1∫
−1

dt√
(1− t2)(1 + k2t2)

, (14)

where

Ã =
B2

A
√
B2 + 1

, k2 =
B2 − 1

B2 + 1
∈ (0, 1). (15)

Let t = sinφ in integral (14). Then

L0 = 2Ã

∫ π/2

0

dφ√
1 + k2 sin2 φ

, L0 ∈ (2.622 Ã, π Ã). (16)

1.3. Case α < 0, γ > 0

In this case, by the re-scaling u =
√
−α

γ
û(
√
−αx), problem (3) can be reduced to

û′′ = û+ û3 − σ̂, û′(0) = û′(L) = 0, (17)

where L =
√
−α l and σ̂ = −σ

α

√
− γ

α
. Integrating (17), we obtain

(û′)2

2
− û4

4
− û2

2
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(û4 + 2û2 − 4σ̂û+ 4p).

Note that the equation û3 + û− σ̂ = 0 has only one real root

ûmin =
( σ̂
2
+

√
σ̂2

4
+

1

27

)1/3
+
( σ̂
2
−
√

σ̂2

4
+

1

27

)1/3
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Fig 3. Phase diagram for the case α < 0, γ > 0 with σ = 0, 1 on the left and σ = 1 on
the right
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Fig 4. Phase diagram for the case α < 0, γ < 0 with σ = 0, 1 on the left and σ = 1 on
the right

for any σ̂ ∈ R1 (one minimum). Thus, we have a nontrivial solution if p > − û4
min

4
− û2

min

2
+

σ̂ûmin with the length of interval, where the solution has only one zero, given by

L0 =
√
2

u2∫
u1

dt√
t4 + 2t2 − 4σ̂t+ 4p

, (18)

where uk are two real roots of the equation t4 + 2t2 − 4σ̂t+ 4p = 0 such that u1 < u2.

1.4. Case α < 0, γ < 0

In this case, by the re-scaling u =
√

α
γ
û(
√
−αx), problem (3) can be reduced to

û′′ = û− û3 − σ̂, û′(0) = û′(L) = 0, (19)
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where L =
√
−α l and σ̂ = −σ

α

√
γ
α
. Integrating (19), we �nd that

(û′)2

2
+

û4

4
− û2

2
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(−û4 + 2û2 − 4σ̂û+ 4p).

Note that the equation −û3 + û− σ̂ = 0 has
• three real roots

ûk = − 2√
3
cos(ϕ+

2kπ

3
), k = 0, 1, 2, ϕ =

1

3
arccos(

3
√
3σ̂

2
);

provided that σ̂2 < 4
27

(two maximums and one minimum). Thus, we have two nontrivial

solutions if û4
max

4
− û2

max

2
+ σ̂ûmax < p ≤ û4

min

4
− û2

min

2
+ σ̂ûmin with the lengths of intervals,

where the corresponding solution has only one zero, given by

L0,1 =
√
2

u2∫
u1

dt√
−t4 + 2t2 − 4σ̂t+ 4p

, L0,2 =
√
2

u4∫
u3

dt√
−t4 + 2t2 − 4σ̂t+ 4p

(20)

where uk are four real roots of the equation t4 − 2t2 + 4σ̂t − 4p = 0 such that u1 < u2 <
u3 < u4.

We have only one nontrivial solution if p >
û4
min

4
− û2

min

2
+ σ̂ûmin with the length of

interval, where the solution has only one zero, given by

L0,3 =
√
2

u2∫
u1

dt√
−t4 + 2t2 − 4σ̂t+ 4p

, (21)

where uk are two real roots of the equation t4 − 2t2 + 4σ̂t− 4p = 0 such that u1 < u2;
• one real root

ûmax =
(
− σ̂

2
+

√
σ̂2

4
− 1

27

)1/3
+
(
− σ̂

2
−
√

σ̂2

4
− 1

27

)1/3
provided that σ̂2 > 4

27
(one maximum). Thus, we have a nontrivial solution if p > û4

max

4
−

û2
max

2
+ σ̂ûmax with the length of interval, where the solution has only one zero, given by

L0 =
√
2

u2∫
u1

dt√
−t4 + 2t2 − 4σ̂t+ 4p

, (22)

where uk are two real roots of the equation t4 − 2t2 + 4σ̂t− 4p = 0 such that u1 < u2;
• two real roots

ûmax = −2(
σ̂

2
)1/3, ûfl = (

σ̂

2
)1/3

provided that σ̂2 = 4
27

(one maximum). Thus, we have a nontrivial solution if p > û4
max

4
−

û2
max

2
+ σ̂ûmax = −2( σ̂

2
)2/3 with the length of interval, where the solution has only one zero,

given by

L0 =
√
2

u2∫
u1

dt√
−t4 + 2t2 − 4σ̂t+ 4p

, (23)
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Fig 5. Phase diagram for the case α = 0, γ > 0 with σ = 0, 1 on the left and for the case
α = 0, γ < 0 with σ = 0, 1 on the right

where uk are two real roots of the equation t4 − 2t2 + 4σ̂t− 4p = 0 such that u1 < u2.
For example, if σ̂ = 0 and p > 0 then we have

(u′)2

A2
+

(u2 − 1)2

B4
= 1, (24)

where A2 = 4p+1
2
, B4 = 4p+ 1, and from (24) it follows that

L0 =
B2

A

√
B2+1∫

−
√
B2+1

dt√
B4 − (t2 − 1)2

= Ã

1∫
−1

dt√
(1− t2)(1 + k2t2)

, (25)

where

Ã =
B2

A
√
B2 − 1

, k2 =
B2 + 1

B2 − 1
> 1. (26)

Let t = sinφ in integral (25). Then

L0 = 2Ã

∫ π/2

0

dφ√
1 + k2 sin2 φ

< π Ã. (27)

1.5. Case α = 0, γ ̸= 0

If α = 0, γ > 0, by the re-scaling u = û(
√
γx), then problem (3) can be reduced to the

one

û′′ = û3 − σ̂, û′(0) = û′(L) = 0, (28)

where L =
√
γ l and σ̂ = −σ

γ
. Integrating (28), we �nd that

(û′)2

2
− û4

4
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(û4 − 4σ̂û+ 4p).
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Thus, problem (28) has a nontrivial solution provided that p > 3
4
σ̂4/3, i. e. p > 3

4
(σ
γ
)4/3.

The length of interval, where the solution has only one zero, is

L0 =
√
2

u2∫
u1

dt√
t4 − 4σ̂t+ 4p

, (29)

where uk are two real roots of the equation t4 − 4σ̂t+ 4p = 0.
If α = 0, γ < 0, by the re-scaling u = û(

√
−γx), then problem (3) can be reduced to

û′′ = −û3 − σ̂, û′(0) = û′(L) = 0, (30)

where L =
√
−γ l and σ̂ = σ

γ
. Integrating (30), we �nd that

(û′)2

2
+

û4

4
+ σ̂û = p ⇐⇒ (û′)2 =

1

2
(−û4 − 4σ̂û+ 4p).

Thus, problem (30) has a nontrivial solution provided that p > −3
4
σ̂4/3, i. e. p > −3

4
(σ
γ
)4/3.

The length of interval, where the solution has only one zero, is

L0 =
√
2

u2∫
u1

dt√
−t4 − 4σ̂t+ 4p

, (31)

where uk are two real roots of the equation t4 + 4σ̂t− 4p = 0. For example, if σ̂ = 0 and
p > 0 then we have the curve

(û′)2

A2
+

û4

B4
= 1, (32)

where A2 = 2p, B4 = 4p. Obviously, the length of interval, where the solution has only
one zero, is

L0 =
B2

A

B∫
−B

dt√
B4 − t4

=
2B

A

1∫
0

dt√
1− t4

=
B

2A
B
(1
4
,
1

2

)
≈ 2, 622

B

A
=

2, 622

p
1
4

, (33)

where B(a, b) :=
1∫
0

xa−1(1− x)b−1dx is the beta function.

1.6. Case γ = 0, α ∈ R1

If α = 0, γ = 0 then problem (3) can be reduced to

u′′ = −σ, u′(0) = u′(l) = 0. (34)

This problem has the following solution

u(x) = C ∀C ∈ R1 and σ = 0,

and it has no solutions if σ ̸= 0.
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Fig 6. Phase diagram for the case α > 0, γ = 0 with σ = 0, 1 on the left and for the case
α < 0, γ = 0 with σ = 0, 1 on the right

If α > 0, γ = 0, by the re-scaling u = û(
√
αx), problem (3) can be reduced to

û′′ = −û− σ̂, û′(0) = û′(L) = 0, (35)

where L =
√
α l and σ̂ = σ

α
. This problem has the following solution

u(x) = C cos(
√
αx)− σ̂, l =

πk√
α
, k ∈ Z+, C ∈ R1.

If α < 0, γ = 0, by the re-scaling u = û(
√
−αx), problem (3) can be reduced to

û′′ = û− σ̂, û′(0) = û′(L) = 0, (36)

where L =
√
−α l and σ̂ = −σ

α
. This problem has the following solution

u(x) = σ̂.

For convenience, we summarize our existence results in the form of Table.

1.7. Example

As shown in [3], the possible dimensionless function f(u, T ) at �xed T can be written
as

f(u, T ) =
T

4T0

(1− u2)2 + a
T − T0

T0

(u+ 1)2 +
c

f0
T ln

(
T

T0

)
, (37)

where T0 is a critical temperature, c is the heat capacity, a = ℓ
4f0

is dimensionless, ℓ is the

latent heat, f0 is a parameter with dimensions of energy density. Comparing (37) with our
f(u), we �nd that

γ =
T

T0

, α =
T − 2a(T − T0)

T0

, σ =
2a(T0 − T )

T0

,

C =
c

f0
T ln

(
T

T0

)
+

T + 4a(T − T0)

4T0

.
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Table
Conditions on the problem's parameters for existence

and non-existence of nontrivial solutions

α σ γ p L0

> 0 σ2 < 4α3

27γ
> 0 p ∈ [pmin, pmax) Yes (2 sol's)

> 0 σ2 < 4α3

27γ
> 0 p < pmin Yes

> 0 σ2 < 4α3

27γ
> 0 p ≥ pmax No

> 0 σ2 ≥ 4α3

27γ
> 0 p < pmin Yes

> 0 σ2 ≥ 4α3

27γ
> 0 p ≥ pmin No

> 0 R1 < 0 p > pmin Yes
> 0 R1 < 0 p ≤ pmin No
> 0 R1 = 0 R1 Yes (family sol's)
< 0 R1 > 0 p > pmin Yes
< 0 R1 > 0 p ≤ pmin No

< 0 σ2 < 4α3

27γ
< 0 p ∈ (pmin, pmax] Yes (2 sol's)

< 0 σ2 < 4α3

27γ
< 0 p > pmax Yes

< 0 σ2 < 4α3

27γ
< 0 p ≤ pmin No

< 0 σ2 ≥ 4α3

27γ
< 0 p > pmin Yes

< 0 σ2 ≥ 4α3

27γ
< 0 p ≤ pmin No

< 0 R1 = 0 R1 No

= 0 R1 > 0 p > 3
4
(σ
γ
)4/3 Yes

= 0 R1 > 0 p ≤ 3
4
(σ
γ
)4/3 No

= 0 R1 < 0 p > −3
4
(σ
γ
)4/3 Yes

= 0 R1 < 0 p ≤ 3
4
(σ
γ
)4/3 No

= 0 R1 = 0 R1 No

For example, if 0 < T ≤ T0 then α > 0, γ > 0, and σ ≥ 0. In this case, according to
the paragraph 2.1, problem (3) has nontrivial solutions. On the other hand, if T > T0

and a < T
2(T−T0)

then α > 0, γ > 0, σ < 0 and we again have the existence of nontrivial
solutions.

2. The Steady States for General Free Energy

In the previous section, we have studied the case when the free energy contains the
linear term but it has no cubic term. Note that the presence of a linear term breaks down
the symmetry of the free energy. Next, we will examine how the length of the existence
interval can be e�ected by the cubic term. It is possible to introduce asymmetry in a phase
diagram by adding odd powers to the free energy expansion so that

f(u, T ) = a0(T ) + a1(T )u+ a2(T )
u2

2
+ a3(T )

u3

3
+ a4(T )

u4

4
+O(u5). (38)
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Note that the special case a1(T ) = a3(T ) = 0 was introduced in [6, p. 19, (2.41)]. The
authors assumed that a4(T ) > 0 and a2(T ) < 0. Then f(u, T ) has maximum at u = 0 and

minimum at u± = ±
√
−a2

a4
. By de�nition, it is easy to verify that f(0, T ) = a0(T ) > 0

and f(u±, T ) < 0 as a22 > 4a0a4 > 0. It means that there is a point u0 ∈ (0,
√
−a2

a4
) such

that f(±u0, T ) = 0. Thus, we can calculate the minimal length as

L0 =

√
2

a4

u0∫
−u0

dt√
(t2 − u2

0)(t
2 − u2

1)
=

√
2

a4u2
1

1∫
−1

dt√
(1− t2)(1− k2t2)

, (39)

where

u0 =

√
−a2
a4

− 1

a4

√
a22 − 4a0a4, u1 =

√
−a2
a4

+
1

a4

√
a22 − 4a0a4, k2 =

u2
0

u2
1

∈ (0, 1). (40)

Substituting the new variable t = sinφ into (39), we have

L0 = 2

√
2

a4u2
1

∫ π/2

0

dφ√
1− k2 sin2 φ

. (41)

Next, consider the equation
1

2
(u′)2 = R(u)

then

L0 =

√
2

2

u2∫
u1

dz√
R(z)

, (42)

where ui are real roots of R(u) = 0 such that u1 < u2. Here

R(z) = az4 + bz3 + cz2 + dz + e = a(z2 + pz + q)(z2 + p′z + q′) (43)

where a, b, c, d, e, p, q, p′, q′ ∈ R, a ̸= 0, i. e.

p =
be+ (ad− bc)q

a(2e− cq)
, p′ =

be− adq

a(2e− cq)
, q′ =

e

aq
, q =

1

2

(
c

a
±
√

c2 − 4ae

a2

)
, c2 ≥ 4ae.

Note that (43) has four real roots

u1,2 =
1

2

(
−p±

√
p2 − 4q

)
, u3,4 =

1

2

(
−p′ ±

√
(p′)2 − 4q′

)
provided that

p2 − 4q ≥ 0 and (p′)2 − 4q′ ≥ 0.

Assume that p ̸= p′. By change of variables

z =
µt+ ν

t+ 1
, dz =

µ− ν

(t+ 1)2
dt (44)
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in (42), we deduce that

L0 =

√
2

2

u2∫
u1

dz√
R(z)

= A

µu2+ν
u2+1∫

µu1+ν
u1+1

dt√
(1 + k1t2)(1 + k2t2)

, (45)

where

A =

√
2

2

µ− ν√
a(ν2 + pν + q)(ν2 + p′ν + q′)

,

k1 =
µ2 + pµ+ q

ν2 + pν + q
, k2 =

µ2 + p′µ+ q′

ν2 + p′ν + q′
.

Here, µ and ν can be found from equations

p(µ+ ν) + 2(q + µν) = 0, p′(µ+ ν) + 2(q′ + µν) = 0, (46)

hence

ν = −q′ − q

p− p′
±

√(
q′ − q

p− p′

)2

− pq′ − p′q

p′ − p
, µ = −q′ − q

p− p′
∓

√(
q′ − q

p− p′

)2

− pq′ − p′q

p′ − p
. (47)

If (43) has four real roots then ki < 0. By change of variables t = (−k1)
−1/2 sinφ in (45),

we deduce that

L0 = Ã

φ2∫
φ1

dφ√
1− k3 sin

2 φ
, (48)

where

Ã =
A√
−k1

, k3 =
k2
k1

> 0, φi = arcsin

(√
−k1(µui + ν)

ui + 1

)
.

In particular, if (43) has only two real roots then k1 < 0 and k2 > 0 or k1 > 0 and k2 < 0.
Moreover, if a > 0 then the problem has no solutions therefore we have to consider the
case a < 0 only. Assume that k1 < 0. Then we obtain (48) with k3 < 0.

In the case p = p′, by change of variables z = t− p
2
in (42), we deduce that

L0 =

√
2

2

u2∫
u1

dz√
R(z)

= Â

u2− p
2∫

u1− p
2

dt√
a(1− k̂1t2)(1− k̂2t2)

, (49)

where

Â =
2
√
2√

(p2 − 4q)(p2 − 4q′)
, k̂1 =

4

p2 − 4q
> 0, k̂2 =

4

p2 − 4q′
> 0.

By change of variables t = (k̂1)
−1/2 sinφ in (49), we �nd that

L0 = Ā

φ̂2∫
φ̂1

dφ√
a(1− k̂3 sin

2 φ)
, (50)

72 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 2, pp. 60�74



ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

where

Ā =
A√
k̂1

, k̂3 =
k̂2

k̂1
> 0, φ̂i = arcsin

(√
k̂1(ui − p/2)

)
.

Next, we consider the special cases p2 = 4q or (p′)2 = 4q′. For example, if (p′)2 = 4q′ then

R(u) = a

(
u−

−p−
√
p2 − 4q

2

)(
u−

−p+
√

p2 − 4q

2

)(
u+

p′

2

)2

.

If a < 0 then two cases are possible:

(i) − p′

2
∈

(
−p−

√
p2 − 4q

2
,
−p+

√
p2 − 4q

2

)
,

(ii) − p′

2
/∈

(
−p−

√
p2 − 4q

2
,
−p+

√
p2 − 4q

2

)
.

In the �rst case (i), we �nd that L0 = ∞. In the second case (ii), we have (48). On the
other hand, if a > 0 then the problem has no solution in the case (i) but for the case (ii)
we have L0 = ∞.

In particular, if p2 = 4q and (p′)2 = 4q′ then

R(u) = a
(
u+

p

2

)2(
u+

p′

2

)2

.

Obviously, if a < 0 then the problem has no nontrivial solutions but if a > 0 then L0 = ∞.
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ÑÒÀÖÈÎÍÀÐÍÛÅ ÐÅØÅÍÈß ÓÐÀÂÍÅÍÈß ÊÀÍÀ �
ÕÈËÀÐÄÀ Ñ ÃÐÀÍÈ×ÍÛÌ ÓÑËÎÂÈÅÌ ÍÅÉÌÀÍÀ

È.Á. Êðàñíþê, Ð.Ì. Òàðàíåö, Ì. ×óãóíîâà

Èññëåäîâàíà ñòðóêòóðà ñòàöèîíàðíîãî ñîñòîÿíèÿ îäíîìåðíîãî óðàâíåíèÿ Êàíà �

Õèëëàðäà â ñî÷åòàíèè ñ ãðàíè÷íûìè óñëîâèÿìè Íåéìàíà. Çäåñü ñâîáîäíàÿ ýíåðãèÿ

çàäàåòñÿ ïîëèíîìîì ÷åòâåðòîãî ïîðÿäêà. Áûëà ïîñòðîåíà äèàãðàììà áèôóðêàöèè ñó-

ùåñòâîâàíèÿ è åäèíñòâåííîñòè ìîíîòîííûõ ðåøåíèé ýòîé çàäà÷è. À èìåííî, íàéäå-

íà äëèíà èíòåðâàëà, íà êîòîðîì ðåøåíèå ìîíîòîííî âîçðàñòàåò èëè óáûâàåò è èìååò

îäèí íóëü äëÿ íåêîòîðûõ ôèêñèðîâàííûõ çíà÷åíèé ôèçè÷åñêèõ ïàðàìåòðîâ. Ïîä íåîä-

íîçíà÷íîñòüþ ïîíèìàåòñÿ âîçìîæíîñòü ñóùåñòâîâàíèÿ áîëåå ÷åì îäíîãî ìîíîòîííîãî

ðåøåíèÿ äëÿ íåêîòîðûõ çíà÷åíèé ôèçè÷åñêèõ ïàðàìåòðîâ.

Êëþ÷åâûå ñëîâà: óðàâíåíèå Êàíà � Õèëàðäà; ãðàíè÷íîå óñëîâèå Íåéìàíà; óñòîé-

÷èâûå ñîñòîÿíèÿ.
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