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Boolean functions are a modelling tool useful in many applications; monotone Boolean
functions make up an important class of these functions. For instance, monotone Boolean
functions can be used for describing the structure of the feasible subsystems of an infeasible
system of constraints, because feasibility is a monotone feature. In this paper we consider
monotone Boolean functions (MBFs), associated with undirected graphs, whose upper zeros
are defined as binary tuples for which the corresponding subgraph of the original undirected
graphs is either the empty graph, or it has no edges.

For this class of MBFs, we present the settings of problems which are related to the
search for upper zeros and maximal upper zeros of these functions. The notion of k-vertices
and (k, m)-vertices in a graph is introduced. It is shown that for any k-vertices of the original
graph there exists a maximal upper zero of an MBF associated with the graph, in which
the component z; corresponding to this k-vertex takes the value 1.

Based on this statement, we construct an algorithm of searching for a maximal upper
zero, for the class of MBFs under consideration, which allows one to find, under certain
conditions, the solution to the problem of searching for a maximal upper zero, or to
substantially reduce the dimension of the original problem.

The proposed algorithm was extended for the case of (k,m)-vertices. This extended
algorithm allows one to fix a bound on the deviation of an upper zero of the MBF from the
maximal upper zeros, in the sense of the number of units in these tuples. The algorithm
has the complexity O(n?p), where n is a number of vertices and p is a number of edges of
the original graph.

Keywords: monotone Boolean function; upper zero of a monotone Boolean function;
graph; algorithm of searching for mazimal upper zeros of a monotone Boolean function.

Introduction

In a wide class of problems, infeasible systems of constraints occur naturally and
become the research subject. A variety of such systems is treated in [1] by methods
of combinatorial geometry and graph theory. The study of infeasible systems, whose
constraints correspond to the vertices of undirected graphs, and the subsystems with two
constraints are feasible if and only if the corresponding vertex pairs are edges of the graphs,
is of special applied interest.

In this paper we associate with a graph a monotone Boolean function whose zeros
correspond to the feasible subsystems of the initial infeasible system of constraints, in
which any subsystem of infeasible system is feasible if and only if every pairs of constrains
is also feasible.

The settings of Problems 1 and 2 in terms of inference of monotone Boolean functions
and, more precisely, as the search for upper zeros and maximal upper zeros, make sense
because such a setting allows one to use, for example, an algorithm of searching for upper
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zeros of monotone Boolean functions described in [1,2]; see also [3-12], where the above-
mentioned and similar algorithms from the family of Find Border Algorithms are discussed.
In this context, the border means the union of the sets of all upper zeros and lower units
of a monotone Boolean function. An extensive survey of the current state of the theory
and practice of MBF inference is presented in [11,13].

Problem 2 can also be solved by the algorithm proposed in [1|; among the upper zeros,
we must find the maximal ones. In addition, an approximate algorithm, guided by the
increasing collection of generated upper zeros, can be involved in research.

Let us turn to basic notions and problems.

1. Basic Notions and Problems

Let [n] := {1,...,n} denote the set of consecutive integers, and let B" := {0,1}"
denote the unit discrete n—dimensional cube. If x:= (z1,...,2,) € B", then
supp(x) :={i € [n] : x; = 1}.

For binary tuples & and a’, of length n, the ordering < «’ in B" by definition holds
if and only if x; < 2%, for all i € [n].

If X C B" is a set of tuples, then mCaXX denotes the subset of maximal elements of
X with respect to the partial order on B", and mﬁLXX denotes the subset of all tuples
from X that have the maximal number of unit components.

A Boolean function §: B"™ — B is called monotone if the implication

z, 2 eB", x <2 = flx)<f(a)

holds. A tuple & € B" is called a zero (respectively, a unit) of f if f(x) = 0 (respectively,
f(x) = 1).

A tuple € B" is called an upper zero of the monotone Boolean function §: B" — B
if f(x) =0, and f(«’) = 1 holds for all ' € B" such that < &’; dually, a tuple x € B"
is called a lower unit of the function § if f(x) = 1, and f(x’) = 0 holds for all ' € B"
such that ' < x. A tuple € B™ is called a mazximal upper zero of the MBF { if
|supp(x)| = max{supp(a’) : =’ € max £71(0)}.

Let a simple undirected graph G := (V(G),E(G)) be given, with the vertex
set V(G) := {v1,...,v,} and the edge family £(G) := {ey,...,e,}. f U C V(G), then
G(U) denotes the induced subgraph of the graph G, on the vertex set U. For a vertex
v e V(G), N(v) C V(G) denotes the neighborhood of the vertex v in the graph G. For a
subset of vertices U C V(G), by (g) denote the family of all unordered 2-subsets of the
set U.

Denote by #(+) the number of sets in a family, and by | - | the cardinality of a set.

Consider the monotone Boolean function fg : B™ — B whose set of units fg'(1) is
defined as following:

fa(@) =1 = #(E(G)N (WeVE@: icmn@))) > 1, (1)

in other words, we suppose fg(x):=1 if and only if the induced sub-
graph G({v; € V(G) : i € supp(x)}) has at least one edge.
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Another monotone Boolean function gg : B™ — B, which is naturally associated with
the graph G, is defined by the set of its zeros gg' (0) as following;

gg(x) =0 <= subgraph G{({v; € V(G): i € supp(x)}) is complete ;  (2)

we relate to the complete graphs, the empty graph G(0) and the isolated vertices G({v;}),
v; € V(G)

The graph-theoretic construction that establishes the connection between MBFs
from (1) and (2) is the complement of the graph. The complement G of the graph G
by definition has the vertex set V(G) and the edge family (V(QG)) — &(Q). Definitions (1)
and (2) imply the following useful identities:

fe =0, fe=0c-
Problem 1. For the function fa defined in (1), to find the set
—1
max fa (0)

of its upper zeros.

Problem 2. For the function g, to find the set

IIIET,X max fa'(0)

of its mazximal upper zeros.

2. An Algorithm for Finding a Maximal Upper Zero of a Monotone
Boolean Function Associated with an Undirected Graph

Consider Problem 2, for graphs from a certain class in more detail.

Proposition 1. Let v; € V(G) be a vertex of a graph G := (V(G),E(G)), such that for
its neighborhood N (v;) the induced subgraph G(N (v;)) of the graph G is complete. Then

there exists a maximal upper zero ' € mlafx max fo'(0) of the function fa such that o} = 1.

Proof. Consider an arbitrary maximal upper zero & € mﬁux max fg'(0) of the function fg,

and associate with this zero the index set I := {s € [n] : vy € N(v;)}. It is easy to see
that among the elements of the set IU{i} there is at least one index j such that x; = 1,
because otherwise we could find a tuple &’ € B” such that z; = 1 and 2/, = z, for all
indices s € [n] — {i}. Thus, because of fg(x) = 0, and by the assumption that z; = 0 for
all s € I, the definition of the function fg implies that fg(x’) = 0. This contradicts the
maximality of the upper zero «, because we obtain the strict inclusion supp(') 2 supp(x)
and fg(2') = fe(x) = 0. Now let us consider the two possible cases. If x; = 1, then we are
done. If x; = 0 and x, = 1 for some index s € I, then for the tuple  one can find the tuple
x’ € B" (by the rule: 2, := x; for all j € [n]—{3, s}, 2} := 1, and 2 := 0), which is an upper
zero of the function fg, in view of the completeness of the induced subgraph G(N (v;)),

and |supp(a’)| = |supp(x)|; we thus obtained a maximal upper zero &’ of the function fg
such that x; = 1, as it was to be proved. O
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Definition 1. For an integer k € [n — 1], a vertex v € V(G) of the graph G :=
(V(G),E(Q)) is called a k-vertex, if [N (v)| = k and the induced subgraph G(N (v)) of the
graph G is complete.

Definition 2. For integers k,m € [n — 1], a vertex v € V(G) of the graph G :=
(V(G),E(G)) is called a (k, m)-vertex, if k = [N (v)| and m = (§) — #(E(G) N (Ng’))).

2

A (k,m)-vertex v € V(G) of the graph G := (V(G), E(G)) is its k-vertex when m = 0.

On the basis of Proposition 1 one can propose an efficient recursive algorithm for
solving Problem 2, which finishes its work either by the construction of a maximal upper
zero of the function fg, or by the reduction of Problem 2 for the function fg to the new
Problem 2 for a function fg/, where G’ C G, that is, by the decrease of the dimension of
the problem to be solved.

Given a vertex v € Vo C V(G), denote by N (v, V) C Vp the neighborhood of the
vertex v in the induced subgraph G(Vj).

Algorithm 1. Algorithm A(G, Vp) for finding a maximal upper zero @ := (z1,...,x,) €
B" of the function fg
Input data: G,V
Output data: Vy, @
Lz, =0,i€(n], v, e
2: for each v; € Vi do
3. if v; is a [N (v, Vo)|-vertex in the subgraph G(V;) then

4: T, 1
Vo < Vo — ({vit UN (vi, Vo))
A(G, V)
end of condition
end of loop

If at the end of the work of Algorithm 1 we get V = (), then, according to Proposition 1,
the resulting tuple @ € B" is a maximal upper zero of the function fg.

However, if at the end of the work of Algorithm 1 we have V;, # (), then for all vertices
of the graph G(V — ;) we determined the values of some components z; such that there
exists a maximal upper zero &’ of the function fg with precisely the same values for these
components, that is, , = x;; and yet we achieve the decrease of the dimension of the
problem from |V| to |V

Lemma 1. Let two graphs Gy = (V,E(Gy)) and Gy = (V,E(Gy)) be given, with the

same vertex set V', and

E(Gy) CE(Gy) .

Then

max max fg, (0) € maxfa, (0) € fa, (0) € fe, (0)

Proof. It is clear that nﬁx max fes(0) C max fa(0) C fa.(0).
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Consider an arbitrary tuple € B" such that x € falg(O). By the definition of the set
of zeros fg. (0) of the MBF fg,, we have:

# (S(GQ) N ({vi: i€s2upp(:c)})) -0.

By the hypothesis of the lemma, we have £(G1) C £(Gz) and V(Gy) = V(Gy); as a
consequence,
#(E(Gy) N (T ieyee@h)) =0, Ve € fg. (0),

and
T € fe, (0) . (3)
Then for any tuples € B" such that x € falz(()), inclusion (3) holds, that is,

far(0) C fgh(0)

as it was to be proved.

It should be mentioned that
max g} (0) £ maxfel (0). ()
Indeed, consider the graphs

Gl = (V(Gl)v E(G )) = ( ) 5
Gy = (V(Ga), £(G2)) = (V. (})) ,

for which we have V(G1) = V(Gz) and £(G1) C £(Gy). The graph G; has no edges,
therefore, the set of upper zeros of the function fg, consists of the unique tuple

wo=(1,1,...,1).

The graph G, is complete; thus, the set of upper zeros of the function fg, has the form:

Any tuple x € max fa.(0) is a zero of the function fg,, that is,

max fg, (0) € fg, (0),  maxfg,(0) £ maxfg, (0) ,

as Lemma 1 asserts; this justifies (4).

Let us define the quantity maxgfg := [supp(x)|, where x € mlzrx max fg'(0), that is
the number of unit components in a maximal upper zero of the fllIlCtiOIlifg.
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Corollary 1. Let Gy := (V, &) and Gq := (V, &) be graphs such that £ C E. Then

maxofg, > maxpfg, -

Proof. Let « € mﬁxx max fe.(0). According to Lemma 1, we have x € fg' (0).

By the definition of the maximal upper zeros of the function, for any tuple € fall (0)

there exists a tuple &’ € m‘elmx max fa.(0) such that @’ > @. Then

maxofg, = |supp(z’)| > |supp(x)| = maxofq, ,

as it was to be proved. 0

Proposition 2. Let G := (V(G),E(G)) be a graph for which vertices v; and v; are not
adjacent. Then

maxofg > maxofGu((v.e,)} = Maxefa — 1. (5)

Proof. The inequality maxg fa > maxo fau{(v;,v;)} follows from Corollary 1.

Let us prove the inequality maxg fgu{(v,v;)} = maxofe — 1. Let @ := (z1,...,2,) be a
maximal upper zero of the function fg.
Case 1. Suppose that z; = 0 and z; = 0. Then = is clearly a zero of the

function fau{(v;v;)}, and it is a maximal upper zero, because otherwise we would obtain,
by definition, that there exists a maximal upper zero ' of the function fgu(w,,.;); such
that @’ > « and |supp(2’)| > |supp(x)|. According to Lemma 1, we obtain that @’ is a
zero of the function fg, but this contradicts the maximality of .

Thus, in this case, we have:

maxofe = maxofau{(v,v;)} = Maxofg — 1.

Case 2. Suppose that z; = 1 and x; = 0. If the edge (v;,v;) is added, then the tuple x
is again a zero of the function fqu{(s,;)) and, as it was shown above, it is also a maximal
upper zero of the function fgu{(v,;)}-

Case 3. Suppose that z; = 1 and x; = 1. If the edge (v;,v;) is added, then we
obtain that @ is not a zero of the function fgu{(v;,)}- In this case, we can find a tuple x’
for which 2, = z, for all s € [n] — {i}, and 2, = 0. The tuple @’ will be a zero of the
function fqu{(v,v;)}- Moreover, by construction,

supp(x’)| = [supp(x)| — 1.
By the definition of the maximal upper zeros of the function, we have:
maxofauy(v;v;)} = [Supp(@’)| = [supp(z)| — 1 = maxefg — 1,

as it was to be proved. 0

Corollary 2. For a graph G = (V(G),E(Q)), let {e1,...,e;} C (V(QG)) —&(G) be a
subfamily of t vertex pairs that are not edges of the graph G.

Then
maxofguie,...e;} = Maxofg — ¢ .
Proof. Tt suffices to apply Proposition 2, ¢ times, to the graph G. 0
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On the basis of Proposition 2, one can modify Algorithm 1 in such a way that the
work of the algorithm will continue until the set of remaining vertices V;, becomes empty
and, besides, a zero x of the function fg will be found, for which, at the same time, we
will calculate the estimate (maxgfg — |supp(x)|) of the deviation of the number of unit
components in the resulting tuple & from the number of unit components in a maximal
upper zero of the function fg.

Algorithm 2. Algorithm A,,(G, Vj)
Input data: G, Vp, m € [n]
Output data: Vp, Ind, x
1: Ind =0
2: for each v; € V do
3. if v is a (JN (v, Vo)|, m)-vertex in the subgraph G(V;) then
4: x; 1
Vo < Vo — ({vi} UN (v, W))
Ind « 1
5: break
end of condition
end of loop

Algorithm 2 sequentially checks, for the given value of m and for each vertex of the
initial set Vg, whether it is a ([N (v;, Vo)|, m)-vertex. If there are no such vertices, then no
operations are performed, and the resulting set V; at the end of the work of the algorithm
coincides with the input set Vj, the flag Ind = 0, a binary tuple « is not determined. In
the case when such a vertex v; is found, the output set V) will be obtained from the input
set Vy by means of the "removal" of the vertex v; and its neighborhood, Ind = 1, and the
corresponding component x; of the tuple  takes the value of 1.

Algorithm 3. Algorithm B(G, V})
Input data: G, 1}
Output data: z € fg' (0)

1: while Vo # 0

2: m=0
Ind=1
3: while (Ind=1) & Vy # 0 do
: Am(Ga Vb)
Ind <+ Ind(A4,,.(G, V%))
end of loop
5:
6: while (Ind=10) & Vj # 0 do
7 m<+—m-+1
Au(GVh)
Ind «+ Ind(A4,,(G, V%))
end of loop
end of loop
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During operation Algorithm 3, as the result of repeated calls of Algorithm 2, the
tuple x is formed, which is a zero of the function fg.

Proposition 3. Let v; be a (k, m)-vertex in a graph G := (V(G),E(G)). Then there exists
a tuple ' € max f'(0) such that i =1 and

lsupp(2’)| > maxofg —m .

Proof. Suppose, according to the definition of the (k, m)—vertices, that for v; € V(G) we
have

{er,. . en} = (V0)) — (£(G)n (V1)) .

Then the vertex v; is a k-vertex in the graph Gy, which is obtained from the graph G by
the addition of m edges {e1, ..., e} into the neighborhood of the vertex v; of the graph G
to turn the induced subgraph G(N(v;)) into a complete graph.

According to Proposition 1, there exists a tuple @x such that ;=1

and x € m|a|\x max fe (0).
According to Corollary 2, for the graph G; we have:

|supp(x)| = maxofg, > maxefg —m .

It follows from Lemma 1 that = € f5'(0). By the definition of the upper zeros, there exists
a tuple x’ € max fg'(0) such that & > x and, as a consequence,

[supp(z’)| = |supp(z)| = maxofe —m

as it was to be proved.

(I
In every next loop of Algorithm 1, the search is terminated when some k-vertex is
found. Such an approach minimizes the number of operations in the working loop of the
algorithm, but it does not necessarily lead to the best solution in the case when Vj # 0.
Let us present an Algorithm 4, in each next working loop of which the parameters k
and m are calculated for every vertex from the current set V.

Algorithm 4.
Input data: G, Vj, m=0
Output data: x € max fg'(0), and m which is the estimate of deviation from max fg

while Vj # ()
for all vertices v; € Vi # (0, to calculate the parameters k; and m; such that v; is
a (k;,m;)-vertex in the graph G(V4); in the set Vp, to extract the subset Vj; C V4 of
vertices with the minimal values of the parameter m;. Among the extracted vertices
in the set V), to find a vertex v;, € Vj with the maximal value of the parameter k;,
Tiy < 1
m < m + m;,
Vo Vo — ({Uio} U N<Uio7 Vb))

end of loop
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Algorithm 4 finds a tuple :EEmCaxfal(O), for which the precision estimate

max fg — [supp(x)| < m of the solution is true.

Let us estimate the complexity of Algorithm 4.

For each vertex v; from the current set Vj, it is necessary to find the number of vertices
in the neighborhood N (v;, V5) and the number of new edges that should be added into the
neighborhood N (v;, V) for turning the induced subgraph G (N (v;, Vp)) into a complete
graph. We remove the vertices v;UN (v, Vi) and the edges e; € G{{v; }JUN (v;, Vp)) until the
current set of vertices Vy becomes empty. Given the input data V(G) = {v1,...,v,} and
E(G) ={ey,...,e,}, we obtain the following estimate. The common number of iterations
undertaken during the work of Algorithm 4 is less than or equal to n; every iteration
demands no more than O(np) actions for the computation of the parameters k and m;
and no more than O(p) actions are needed for the removal of a vertex and its neighborhood
from the current graph. Thus, Algorithm 4 has the complexity of O(n-np-+np) = O(n?p).

3. Solving the Problem of Searching for a Maximal Upper Zero

For some applied problems that are reduced to Problem 2, either exact results were
obtained, or the significant decrease of the dimension of Problem 2 was achieved.

Example 1. The graph G := (V := {vy,..., v}, &) is specified by the incidence lists
N (v;) of its vertices, i € [22], Vo =V

N (v1) := {vg, v3,v4, V6, V8, V9 } , N (v12) := {va,v3, 04, V6, V11, V17} 5
N(Uz) = {U1703,U4,067012} ) N(U13) = {U11,U14,U15} )

N(U:s) = {017U2,114,U7,U12} N(UM) = {U11,U13>U15} )

N(U4) = {Ul,U2,Us,U5,U6708709,U107?112} N(U15) {U117'0137U147U16} )
N(U5) {U4;U67U77U97U10} N<U16) {U15,U17}

N(UG) {Uh02,U4,U5,U7,U87U9,U12} N(U17) { 127?116,@18,019,@217022} )
N(U7) { 3,115,1)6} N(U18) { 10,2717,1)19,1121,022} )
N(UB) {Ul, Vg, Vg, Ug} N(Uw) { V17, V18, V21, 1)22} )
N(Ug) {Ul, Vg, Vs, U67U87010} N(U2o) { 1077121,1)22}

N(Ulo) = {U47U57U970117U187U20} ) (U21) {U177U187U19;U20}
N(UU) = {UIO;U127U137U147U15} ) N(U22) = {0177?]18,1)19,1)20} .

Acting in accordance with Algorithm 1, for each vertex v; € Vy we check whether it is
a k-vertex in the graph G.
A(G, Vp):

V1 @3,4,56,7) 1s not a 6 (5,5,9,5,8, 3)-vertex.

vg is a 4-vertex = xg < 1; Vo < Vi — {v1, v4, vg, vs, Vg }.
Vg I8 a 2-vertex = x9 « 1; Vo < Vo — {vg, v3,v12}.

Vs iS not a 2-vertex.

vr is a l-vertex = x7 « 1; Vo <+ Vo — {ws, v7}.

V10 (11) is not a 3 (4)-vertex.

v13 is a 3-vertex = x13 < 1; Vo < Vo — {wv11, v13, v14, 015}
V10 18 not a 2-vertex.

v1 18 a l-vertex = x15 < 1; Vo < Vo — {v16, v17}-

V10 (18,19,20,21,22) is not a 2 (4, 3, 3, 3, 3)—Vertex.
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x=(0,1,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0) is a zero of the function fg,

x € §g'(0); besides, a maximal upper zero @’ € m‘arx max fg'(0) of the function fg has the
form: B

wl = (07 17 07 Oa 07 07 17 17 07-77107 07 07 17 Oa 07 17 07 T18,X19, 1’20,5521,1'22) .

Thus, the dimension of the problem was decreased from [Vp| =22 to
Vol = [{v10, v18, V19, Va0, V21, Va2 }| = 6.

For exhausting the vertex set Vg, we follow Algorithm 3, that is, among the vertices
from the set Vj we search for (k, m)-vertices (the case of m = 0 corresponds to the search
for k-vertices, which was undertaken by Algorithm 1).

Table 1
The result of the work of Algorithm 3
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]
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@]
]
]
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Example 2. Acting in accordance with Algorithm 3, for each vertex v; € V, we check
whether it is a (k, m)-vertex in the graph G.

Vo # 0, m=0:

Ind=0=m+m+1=1, A(G,V}):

v1p 18 a (2, 1)-vertex: x1g < 1, Vo < Vo — {10, v1s, V20 }-

Ind=1=m=0, Ay(G, Vp):

V19 18 not a 2-vertex;
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V91 18 a l-vertex: x9y < 1, Vo + Vo — {v19, 091 }.
Ind=1=m=0, Ay(G, Vp):

V9o is a O-vertex: zgy <— 1, Vo — Vo — {vaa}.

Vo = 0.

z =(0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1) is a zero of the function fg, and it
is a maximal upper zero of the function fgu(vs,m0)}; then, according to Proposition 2, the
number of unit components in a maximal upper zero of the function fg is restricted by
the inequality:

maxofe < maxofGu{(vsw)} + 1 = [supp(z’)| +1=9.

Table 2
The work of Algorithm 4

U1 6/5
v | 5/2 | 2/0 | 2/0
vs | 5/5 | 3/2 | 3/2

vy | 9/19

vs | 5/4 | 2/1 | 2/1 | 2/1

ve | 8/15

vr | 3/2 | 2/1 | 2/1 | 1/0

Vg 4/0

Vg 6/5

v | 6/12 | 4/6 | 3/3 | 3/3 | 2/1 | 2/1 | 1/0
V11 5/7 5/7

vt | 3/0 | 3/0

vs | 4/3 | 4/3
v | 2/1 | 2/1 | 1/0 | 1/0 | 1/0
vy | 6/10 | 6/10 | 6/10 | 5/5 | 5/5
vs | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/4
vio | 4/1 | 4/1 | 4/1 | 4/1 | 4/1 | 3/1
veo | 3/3 | 3/3 | 3/3|3/3|3/3]3/3]1/0
vor | 4/3 | 4/3 | 4/3 | 4/3 | 4/3 | 3/2
veo | 4/3 | 4/3 | 4/3 | 4/3 | 4/3 | 3/2

DO O HOOHrROOHOORrROR PR OODOOR OISR

It is convenient to describe the result of the work of Algorithm 3 in the form of Table 1.
The columns of the table correspond to the current state of the set V. We sequentially
remove k-vertices and their neighborhoods from the set 1}, associating to the corresponding
components x; of the value 1 in the case when v; is a k-vertex, and of the value 0 otherwise.

Table 2 describes the work of Algorithm 4. Every column of the table represents an
iteration of Algorithm 4; the nonzero elements of a column correspond to the set V4, and
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in an ¢-th row’s values of £ and m are related to the vertex v; in the current subgraph
G (V).

For the resulting tuple « = (0,1,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0) it holds
that x € mgxfal(()) and according to Corollary 2 from Proposition 2 we see that

supp(z)| = 7 > maxq fg — 1, or equally max, fg < 8.
Earlier, for the tuple ' obtained with the help of Algorithm 3, we also obtained that
max fg < 9. Since ' € max fg'(0), |supp(x’)| = 8 and maxofg < 8, we see that x’ €

HIIE‘%X max fo'(0) and maxfg = 8.
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AJITOPUTM PACIIN®POBKI MOHOTOHHBIX
BYJIEBBIX ®YHKIINI, TTOPOYK TAEMBIX
HEOPMEHTUPOBAHHBLIMI TPA®AMU

/I.H. TI'atinanos, B.A. Paccka3sosa

Cy1mrecTByeT A0CTATOYHO MPUKIAIHBIX 337139, B KOTODPBIX OIHUM W3 WHCTPYMEHTOB
MOJIEJTUPOBAHMSA CJIY2KAT OyneBbl DYHKINM, CPEAN KOTOPBIX BaXKHYIO POJIb MTPAIOT MOHO-
ToHHBIE OysieBbl pyHKkmuu. Hanpumep, MOHOTOHHBIE Oy1eBbI (DYHKIINKU ABJISIIOTCA YA00HBIM
CPEICTBOM JIJIST OTTMCAHNS CTPYKTYPhI COBMECTHBIX TOICHCTEM HECOBMECTHBIX CHCTEM YCJIO-
BUi1, MOCKOJBKY COBMECTHOCTD SIBJISETCSI MOHOTOHHBIM CBOHCTBOM.

B pabore paccMarpuBarTCs MOHOTOHHBIE OYJIeBbI (DYHKITHH, TOPOXKIAEMbIE HEOPUEH-
TUPOBAHHBIMU Tpadamu, B KOTOPLIX HYIW (DYHKIIUU ONPEIeIA0TCA KAK TAKUE TBOUIHBLIE
HAOOPBI, /I KOTOPBIX COOTBETCTBYIONMIN TOArpad MCXOIHOTO HEOPUEHTHPOBAHHOTO rpada,
IIyCT, Uiau He coaepkut pebep. s Takoro Kracca MOHOTOHHBIX Oy/ieBbIX (DyHKIHE JAF0TCsT
TTOCTAHOBKHU 33734, CBSI3aHHBIX C BBIIEJEHUEM BEPXHUX HYJIEH M MAKCHUMAJIbHBIX BEPXHUX
uyseit hyukiuu. Beogsrca nousarus k-sepmunbt u (K, m)-BepIIMHbL B HEOPUEHTUDOBAHHOM
rpade. Ilokazano, gro st a1060it k-BepimuHbl UCXOTHOTO Tpada CYIECTBYeT MAKCHMATh-
HBII BEPXHHUI HyJb HOPOKIECHHON MOHOTOHHON Oy/eBoit (DyHKINN, B KOTOPOM KOMIIOHEHTA,
Z;, COOTBETCTBYIOIIAsA 3TOH k-BepIlUHE, IPUHAMAET 3HadeHue 1.

Ha ocHoBe 3TOr0 yTBEpKIEHUST TTOCTPOEH aJTOPUTM BBIIETIEHUS] MAKCUMAJIBHOTO BEpX-
HEro HyJisl JJIS PACCMATPUBAEMOrO K/IACCA MOHOTOHHBIX OyIeBbIX (DYHKIHH, KOTOPBIH ra-
PaHTUPYeT, IPU OMpPEeJEeHHBIX YCJIOBUAX, HAXOXKIEHUE TOYHOTO DEIeHNs 334N TTOUCKA,
MaKCUMAaJIbHOTO BEPXHEro HyJis, JUOO MPUBOAUT K CHUXKEHUIO PA3MEPHOCTU MCXOIHON 3a-
Jaan. TIpeaiozKeHHbI aJiropuT™ 0606ImaeTcs Iy caydasa nenoab3opanud (k, m)-pepima.
ITocTpoeHHDIH aTOPNTM BBIIESIET BEPXHUN HYJIh MOHOTOHHOH OyieBoit DYHKINN U JaeT
OIIEHKY er0o OTK/IOHEHWSI OT MAaKCHMAJIbHOTO BEPXHErO HyJs MO YUCIY eIWHUI] B ITUX Ha-
Gopax. Anroputm mmeer ciokuocth O(np), The n — WHCIO BEPIIMH W P — YHCAO pebep
HUCXOIHOTO Tpada.

Karoueavie ca06a: monomonnas 6yresa Gyrkuus; 6epruut Hysb MOHOMOHHOT 6Y.1e801
PYHKUUL, HEOPUEHMUPOBAHHDLT 2Dal; AAZOPUMM TOUCKE MAKCUMAADHBEL GEPTHUT HYAeT

MOHOMOHHOT, 6YAL60T PYHKULU.

Paboma nposodunace npu dunancosoti noddepocre KIII (Koarexmuerodl uyenmp
npesocrodemea) <Keanmym u 6udeoun@opmatuontbe MeTHOA0UUS> NPOPAMMA PA3-
sumus  Yparockozo @edepasvho2o yrusepcumema um. nepeoz2o npeaudenma Poccuu
B.H. Eavuyuna.
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